2022-2023學年山東省棗莊市山亭區、市中區七年級(下)期末數學試卷(含解析)_第1頁
2022-2023學年山東省棗莊市山亭區、市中區七年級(下)期末數學試卷(含解析)_第2頁
2022-2023學年山東省棗莊市山亭區、市中區七年級(下)期末數學試卷(含解析)_第3頁
2022-2023學年山東省棗莊市山亭區、市中區七年級(下)期末數學試卷(含解析)_第4頁
2022-2023學年山東省棗莊市山亭區、市中區七年級(下)期末數學試卷(含解析)_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年山東省棗莊市山亭區、市中區七年級(下)期末

數學試卷

一、選擇題(本大題共10小題,共30.0分。在每小題列出的選項中,選出符合題目的一項)

1.下列式子運算正確的是()

A.a3-a=a3B.(a2)3=a6C.a6a3—a2D.(—3a2)3=—9a6

2.“二十四節氣”是中華農耕文明的結晶,被國際氣象界譽為“中國第五大發明”.下列四

幅作品分別代表“立春”、“谷雨”、“白露”、“大雪”,其中不是軸對稱圖形的是()

3.航空工業作為“現代工業之花”,對航空材料的選取有極高的要求.我國科研人員攻克技

術難題,已經能將航空發動機風扇葉片關鍵曲面輪廓誤差控制在0.000007m以內.0.000007用

科學記數法表示為()

A.7x10-6B.7x10-5C.0.7x10-6D.0.7x10-5

4.如圖,AB//CD,4E平分ABAC,若NC=50。,貝ikAEC的度數AB

A.50°

ED

B.55°

C.60°

D.65°

用下列長度的三根木棒首尾相接,能做成三角形框架的是(

A.2cm,2cm,5cmB.5cm,6cm,8cm

C.2cm,4cm,8cmD.lcm,2cm,3cm

如圖,在七ABC和AQEF中,點、B,F,C,E在同一直線上,4C〃DF,

AC^DF,只添加一個條件,不能判定△718CmADEF的是(

A.DE=AB

B.EC=FB

C.乙E=乙B

D./.A=7.D

7.對于氣溫,有的地方用攝氏溫度表示,有的地方用華氏溫度表示,攝氏溫度武冤)與華氏

溫度T(°F)有如下的對應關系:

攝氏溫度

-100102030

t(℃)

華氏溫度

1432506886

T(°F)

由表中數據可知華氏溫度T(°F)與攝氏溫度?冤)的關系式是()

A.r=1.8t+14B.T=-1.8t+32C.T=1.8t+32D.T=18t+32

8.如圖,AD,AE,4F分別是△力BC的中線、角平分線、高線,下列結論中錯誤的是()

A.CD=^BCB.2^BAE=^BAC

C.ZC+^LCAF=90°D.AE=AC

9.若等腰三角形的兩邊長分別為2和5,則它的周長為()

A.9B.7C.12D.9或12

10.如圖,在RtAABC中,N4CB=90。,按以下步驟作圖:

①以8為圓心,任意長為半徑作弧,交B4于點M,交BC于點、N;

②分別以M,N為圓心,以大于gMN的長為半徑作弧,兩弧相交于點P;

③作射線BP,交邊AC于點。,點E是邊上一動點,連接DE,若CD=3,則線段OE的最小值

是()

A3B.3C-1D.2

二、填空題(本大題共6小題,共18.0分)

11.計算:(3xy+y)+y=.

12.某養殖專業戶為了估計魚塘中魚的數量,第一次隨機從魚塘中打撈了200條魚,在每條

魚身上做好標記后放回魚塘.一周后,再從魚塘中隨機進行打撈,通過多次試驗發現有標記的

魚出現的頻率穩定在0.1左右,則魚塘中大約有條魚.

13.如圖,A,B兩個建筑物分別位于河的兩岸,為了測量它們之間A

的距離,可以沿河岸作射線BF,且使BF14B,在8尸上截取8c=CD,三三若浮三三三

過D點作DE1BF,使E,C,力在一條直線上,測得OE=16米,則4

B之間的距離為米.

E

14.對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數學等式.例如,由圖

1可以得到(rn+n)2=/+2mn+層,請參考由圖1得到的等式,寫出圖2所表示的數學等式:

圖2

15.如圖,在ATlBC中,DE是48的垂直平分線,交BC于點、D,

交AB于點E,連接力D.已知△4CD的周長為18,AC=7,貝的

長為.

16.如圖,在44BC中,4D是BC邊上的中線,點E是AD的中點,若△ABC

的面積是4,則△ZCE的面積是

三、解答題(本大題共8小題,共72.0分。解答應寫出文字說明,證明過程或演算步驟)

17.(本小題8.0分)

小剛在化簡代數式Q+1)2+x(x-2)-(%+l)(x-1)時出現了錯誤,他的解答步驟如下:

解:原式=%2+2x+1+%2—2x-(x2—1)........................................第一步;

=x2+2%+1+x2-2x-x2-1...................................................................第二步;

=%2...................................................第三步.

(1)小剛的解答過程是從第步開始出錯的;

(2)請寫出正確的解答過程,再求出當尤=-1時代數式的值.

18.(本小題8.0分)

如圖,在由邊長為1個單位長度的小正方形組成的網格中,AABC的三個頂點均為格點(網格

線的交點).

(1)在網格中畫出△AB'C',使△a'B'C'與AABC關于直線/成軸對稱(不寫作法);

(2)請直接寫出AAB'C'的面積:.

19.(本小題8.0分)

在一個不透明的袋子里裝有6個小球,分別標有數字1,2,3,4,5,6.每個小球除數字外都

相同.

(1)小軍隨機從中摸出一個小球,摸到標有數字4的小球的概率是多少?

(2)若小軍摸出小球上的數字恰好是4,且沒有放回袋中.然后小穎從袋中隨機摸出一個小球,

小球上的數字大于4的概率是多少?

(3)現兩位同學把球全部放回,請你重新制定一個摸球規則,使得摸出小球的概率是,

20.(本小題8.0分)

小明回顧了一下用尺規作一個角等于已知角的過程:

已知:AAOB.

求作:/.A'O'B'=ZXOB.

作法如下:

①作射線。'B';

②以點。為圓心,任意長為半徑作弧,分別交。4于點。,交。8于點E;。三

③以點。'為圓心,。。長為半徑作弧,交。'B'于點E';

④以點E'為圓心,長為半徑作弧,交前弧于點

⑤過點D'作射線0'4'.乙4'0'B'就是所求作的角.

請你根據以上材料完成下列問題:

(1)完成下面說理過程(將正確答案填在相應的橫線上);

如圖,分別連接DE,D'E'-,

由作圖可知,OD=O'D',OE=,DE=,所以△DOE三,(SSS)

所以N40B=NA'O'B'(依據)

(2)上面說理過程中的依據是:.

21.(本小題8.0分)

生活現象

如圖1,桿秤是中國最古老也是現今人們仍然在使用的衡量工具,是利用杠桿原理來稱質量的

簡易衡器,由木制的帶有秤星的秤桿、金屬秤坨、提繩等組成.

數學模型

如圖2,是桿秤的示意圖,AC//BD,經測量發現乙4=104。,NBOE=76。,請判斷OE與8。的

位置關系,并說明理由.

圖1圖2

22.(本小題10.0分)

在三角形三個內角中,如果滿足其中一個內角a是另一個內角£的2倍時,我們稱此三角形為

“特征三角形”,其中內角a稱為“主特征角”,內角£稱為“次特征角”.

(1)已知在AABC中,ZX=30°,乙B=50°,判斷△ABC是否為“特征三角形”,并說明理由;

(2)在△OEF中,AD=96。,若△DEF是“特征三角形”,且NE是“次特征角”,求NE的度

數.

23.(本小題10.0分)

某生物興趣小組到勞動教育實踐基地觀察某種植物生長的情況,得到植物高度y(厘米)與觀察

時間比(天)之間的關系,并畫出如圖所示的圖象.

(1)在這個變化過程中,自變量是,因變量是;

(2)該植物從觀察時起,多少天以后停止厘米長高?

(3)當觀察時間從第40天到第60天時,植物的高度增長多少厘米?該植物平均每天長高多少厘

米?

24.(本小題12.0分)

如圖1,在△ABC中,AB=AC,4D是△ABC的角平分線.

(1)寫出圖中全等的三角形,線段4。與線段8c的位置關系是;

(2)如圖2,在(1)的條件下,過點B作BE1HC,垂足為E,交4。于點F,且ZE=BE,請說明

AAEF^ABEC的理由.

答案和解析

1.【答案】B

【解析】解:4a3-a=a4,故A錯誤,不符題意;

B、(a2)3=a6,正確,符合題意;

C、a6^a3^a3,故C錯誤,不符題意;

£)>(-3a2)3=-27a6,故。錯誤,不符題意.

故選:B.

根據同底數塞的乘除法、積的乘方、募的乘方法則逐項判斷即可.

本題考查了同底數募的乘除法、積的乘方、哥的乘方的運用,區別各個法則的應用是解題關鍵.

2.【答案】C

【解析】解:A,B,D選項中的圖形都能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩

旁的部分能夠互相重合,所以是軸對稱圖形;

C選項中的圖形不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重

合,所以不是軸對稱圖形;

故選:C.

如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條

直線叫做對稱軸,這時,我們也可以說這個圖形關于這條直線(成軸)對稱.

本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.

3.【答案】A

【解析】解:0.000007=7X10-6,

故選:A.

根據科學記數法的形式改寫0.000007即可.

本題主要考查科學記數法的知識,熟練掌握科學記數法的形式是解題的關鍵.

4.【答案】D

【解析】解:-:AB//CD,

:.ZC+ACAB=180°,

???zC=50°,

???"AB=180°-50°=130°,

???4E平分Z_CA8,

???乙EAB=^CAB=65°,

???ABIICD,

.-./.AEC=乙BAE=65°.

故選:D.

根據平行線性質求出NC4B的度數,根據角平分線求出NE4B的度數,根據平行線性質求出N4EC的

度數即可.

本題考查了角平分線定義和平行線性質的應用,注意平行線的性質有:①兩條平行線被第三條直

線所截,同位角相等,②兩條平行線被第三條直線所截,內錯角相等,③兩條平行線被第三條直

線所截,同旁內角互補.

5.【答案】B

【解析】解:42+2<5,故A不符合題意;

B、5+6>8,故8符合題意;

C、2+4<8,故C不符合題意;

。、1+2<3,故。不符合題意.

故選:B.

在運用三角形三邊關系判定三條線段能否構成三角形時,只要兩條較短的線段長度之和大于第三

條線段的長度,即可判定這三條線段能構成一個三角形,由此即可判斷.

本題考查三角形的三邊關系,關鍵是掌握三角形的三邊關系定理.

6.【答案】A

【解析】解:-:AC//DF,

???Z-ACB=Z-DFE,

A、添力口DE=48,乙ACB,乙DFE,分另lj是A3、DE的對角,不能判定△ZBCwa

DEF,故A符合題意;

B、由EC=FB,得到EF=BC,由S4S能判定△力BC三△DEF,故8不符合題意;

c、添力口NE=NB,由aas判定AABC三ADEF,故c不符合題意;

D、添加/4=ND,由2S4判定AABC三ADEF,故。不符合題意.

故選:A.

由平行線的判定,即可判斷.

本題考查平行線的判定,關鍵是掌握平行線的判定方法.

7.【答案】C

【解析】解:表格中的各組華氏溫度T(°F)與攝氏溫度1(?!辏┑膶?,都滿足7=1.81+32,

故選:C.

將表格中的每一組華氏溫度T(°F)與攝氏溫度t(。。)的對應值代入選項中的關系式進行驗證即可.

本題考查函數關系式,驗證表格中的各組華氏溫度7(叩)與攝氏溫度tfC)的對應值所滿足7與t的關

系式是正確解答的關鍵.

8.【答案】D

【解析】解:4、???40是AABC的中線,

CD=\BC,

故此選項不符合題意;

B、???4E是△ABC的角平分線,

???2/-BAE=Z-BAC,

C、:4尸是△ABC的IWJ線,

???AAFC=90°,

??.Z.C+^CAF=90°,

故此選項不符合題意;

D、無法證得AE=/C,

故此選項符合題意;

故選:D.

根據三角形的中線、角平分線、高線的定義進行判斷即可.

本題考查了三角形的中線、角平分線和高,熟記定義是解題的關鍵.

9【答案】C

【解析】解:(1)若2為腰長,5為底邊長,

由于2+2<5,則三角形不存在;

(2)若5為腰長,則符合三角形的兩邊之和大于第三邊.

所以這個三角形的周長為5+5+2=12.

故選:C.

求等腰三角形的周長,即是確定等腰三角形的腰與底的長求周長;題目給出等腰三角形有兩條邊

長為2和5,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能

否組成三角形.

本題考查了等腰三角形的性質和三角形的三邊關系;題目從邊的方面考查三角形,涉及分類討論

的思想方法.求三角形的周長,不能盲目地將三邊長相加起來,而應養成檢驗三邊長能否組成三

角形的好習慣,把不符合題意的舍去.

10.【答案】B

【解析】解:由作圖過程可知:BD平分乙4BC,

???AACB=90°,

???DC1BC,

當。ELAB時,線段DE取得最小值,此時DE=DC=3,

故選:B.

由作圖過程可知:平分乙4BC,根據角平分線的性質即可解決問題.

本題考查了作圖-基本作圖,角平分線的性質,解決本題的關鍵是掌握基本作圖方法.

11.【答案】3x+l

【解析】解:原式=3x+l,

故答案為:3%+1

原式利用多項式除以單項式法則計算即可求出值.

此題考查了整式的除法,熟練掌握運算法則是解本題的關鍵.

12.【答案】2000

【解析】解:設魚塘中有魚x條,

根據題意得200+0.1=x,

解得%=2000,

所以估計魚塘中有魚2000條.

故答案為:2000.

魚塘中有魚x條,利用頻率估計概率得到200+0.1=久,然后解方程即可.

本題考查利用頻率估計概率.大量反復試驗下頻率穩定值即概率.用到的知識點為:概率=所求

情況數與總情況數之比.

13.【答案】16

【解析】解:在AdCB和AECD中,

Z.ACB=Z-DCEamp;

BC—CDamp;,

Z-B=乙EDCamp;

:^ACB=^ECD(ASA)f

.?.AB=DE=16.

故答案為:16.

證明出這兩個三角形全等,從而可得到結論.

本題考查全等三角形的應用,關鍵是證明三角形全等,從而得到線段相等,得到結論.

14.【答案】(a+b+c)2=M+爐++2ab+2ac+2bc

【解析】解:圖2中,“大正方形”的邊長為Q+b+c),因此面積為(a+b+c)2,組成“大正

方形”的9個部分的面積和為Q2+屆++2ab+2ac+2bc,

因此(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,

故答案為:(a+b+c)2=a?+爐++2ab+2ac+2bc.

用代數式表示圖形中各個部分的面積,利用面積之間的和差關系得出結論》

本題考查完全平方公式的幾何背景,掌握完全平方公式的結構特征是正確解答的前提,用代數式

表示圖形中各個部分的面積是解決問題的關鍵.

15.【答案】11

【解析】解:DE是4B的垂直平分線,

DA=DB,

???△/DC的周長為18,

AC+CD+DA=AC+CD+DB=AC+CB=18,

-AC=7,

???BC=18-AC=18-7=11.

故答案為:11.

利用線段的垂直平分線的性質可知。4=DB,進而求出BC=BD+DC=AD+CD,于是求出BC的

長.

本題考查線段的垂直平分線的性質,解題的關鍵是理解題意,靈活運用所學知識解決問題.

16.【答案】1

【解析】解:???4。是BC邊上的中線,點E是4D的中點.

2SAACSA

S&4BC=。,4co=2S^ACE,

SAABC=4sA4CE,即SA4CE=4sAABC,

???△ABC的面積是4,

S^ACE—1.

故答案為:1.

根據三角形的中線的性質可得SMBC=4SMDE,進而可求解.

本題主要考查三角形的面積,掌握三角形中線的性質是解題的關鍵.

17.【答案】二

【解析】解:(1)小剛的解答過程是從第二步開始出現錯誤的.

故答案為:二.

(2)原式=x2+2x+1+%2-2%—(%2—1)

=x2+2%+1+x2—2x—x2+1

=x2+2.

當久=—1時,原式=x2+2=(―I)2+2=14-2=3.

(1)仔細檢查小剛的解答過程即可得出答案;

(2)首先利用乘法公式和整式乘法運算法則進行計算,然后再合并同類項即可得出答案,最后再將

%=-1代入計算即可

此題主要考查了整式的混合運算,解答此題的關鍵是熟練掌握乘法公式、整式乘法的運算法則.易

錯點是去括號,需要注意的是如果括號前面是”號,去掉括號,括號里面的各項都要變號.

18.【答案】8

【解析】解:(1)如圖,△A'B'C'即為所求;

1--------11111?1III1

1t1111111111

(2)A4B'C'的面積=|x(2+3)x6-|x2x4-jx1_____1___1_____1___1_____1一一-1_____1_____1_____1_____1____?

??1A???

2x3=15—4-3=8,

r-T-Y-n^-r-T-

故答案為:8.

rvs-nrr二斗羊i

(1)根據軸對稱的性質即可在網格中畫出△A'B'C',使41--------J1--------1-Fl--------1-------

?B?1y?

AB'C'與△ABC關于直線/成軸對稱;

1--------1-------1--------1-T1-------

11111V??'?1

L.J___1<_」_L_」_........................................................

(2)利用網格根據割補法即可求出△AB'C'的面積.111111111111

11111111I111

1--------1????111111

111111111111

本題考查作圖-軸對稱變換,掌握軸對稱圖形的畫法、1_____1___1_____1___1_____1___1111?

111111111111

111111111111

軸對稱的性質是解決此題的關鍵.

19.【答案】解:(1)共有6種等可能出現的結果,其中摸出小球上數字是4的只有1種,

所以小軍隨機從中摸出一個小球,摸到標有數字4的小球的概率是3

(2)由于小軍摸出小球數字是4,則還剩小球上的數字還有1、2、3、5、6,共5種等可能出現的結

果,其中大于4的有2種,

所以小穎從袋中隨機摸出一個小球,小球上的數字大于4的概率是看;

(3)規則:摸出小球上的數字小于3(答案不唯一).

【解析】(1)根據概率的定義,從6個小球中隨機摸出1球,每個球被摸到的可能性是均等的,因此

一共有6種等可能出現的結果,其中是數字4的只有1種,可求出相應的概率;

(2)小軍摸出小球數字是4,則還剩小球上的數字還有1、2、3、5、6共5種等可能出現的結果,其

中大于4的有2種,可求出相應的概率;

⑶根據“摸出小球的概率是”即“摸出小球的出現的次數占6次的也就是2次”,再確定摸球

規則.

本題考查概率公式,理解概率的定義,掌握簡單隨機事件概率的計算方法是正確解答的關鍵.

20.【答案】O'E'D'E'AD'O'E'全等三角形對應角相等

【解析】解:(1)如圖,分別連接DE,D'E';

由作圖可知,。。=。'。',OE=O'E',DE=D'E',

所以△DOE=AD'O'E'(SSS),

所以乙4。8=乙4'。'8'(全等三角形對應角相等),

故答案為:O'E',D'E',△D'O'E';

(2)上面說理過程中的依據是全等三角形對應角相等.

故答案為:全等三角形對應角相等.

(1)根據作圖過程即可完成填空;

(2)根據全等三角形的性質即可解決問題.

本題考查了作圖-基本作圖,全等三角形的判定與性質,解決本題的關鍵是掌握基本作圖方法.

21.【答案】解:OE"BD,理由如下:

AC//BD,

Z.A+/.ABD=180°,

???Z.ABD=180°-104°=76°,

Z.ABD=Z.BOE,

:.OE//BD.

【解析】由可得乙4+N4BD=180°,進而得出N4BD=76°,再根據內錯角相等,兩直線

平行可得答案.

本題考查了平行線的判定和性質,熟練掌握這些判定和性質解題的關鍵.

22.【答案】解:(1)???在△48C中,乙4=30°,Z.B=50°,

???ZC=180°-30°-50°=100°,

由于=2乙B,

??.△ABC是“特征三角形”;

(2)在ADEF中,ND=96。,

???NE+Nf=180°-96°=84°,

由于△DEF是“特征三角形”,且NE是“次特征角”,

①當ND=2NE時,即2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論