浙江杭州上城區2024年中考二模數學試題含解析_第1頁
浙江杭州上城區2024年中考二模數學試題含解析_第2頁
浙江杭州上城區2024年中考二模數學試題含解析_第3頁
浙江杭州上城區2024年中考二模數學試題含解析_第4頁
浙江杭州上城區2024年中考二模數學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江杭州上城區2024年中考二模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F,若∠B=52°,∠DAE=20°,則∠FED′的度數為()A.40° B.36° C.50° D.45°2.點M(a,2a)在反比例函數y=的圖象上,那么a的值是()A.4 B.﹣4 C.2 D.±23.已知,代數式的值為()A.-11 B.-1 C.1 D.114.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°5.函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣26.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.7.二次函數y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結論:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數圖象上,則y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<5<x1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個8.吉林市面積約為27100平方公里,將27100這個數用科學記數法表示為()A.27.1×102B.2.71×103C.2.71×104D.0.271×1059.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數是()A.150° B.140° C.130° D.120°10.數據3、6、7、1、7、2、9的中位數和眾數分別是()A.1和7 B.1和9 C.6和7 D.6和911.如果,那么代數式的值為()A.1 B.2 C.3 D.412.若分式在實數范圍內有意義,則實數的取值范圍是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A的坐標是(2,0),△ABO是等邊三角形,點B在第一象限,若反比例函數的圖象經過點B,則k的值是_____.14.如圖,某數學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.15.若一組數據1,2,3,的平均數是2,則的值為______.16.如圖,某城市的電視塔AB坐落在湖邊,數學老師帶領學生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為______米(結果保留根號).17.對于函數,若x>2,則y______3(填“>”或“<”).18.在△ABC中,∠C=90°,若tanA=,則sinB=______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,直線y=x+2與x軸,y軸分別交于A,B兩點,點C(2,m)為直線y=x+2上一點,直線y=﹣x+b過點C.求m和b的值;直線y=﹣x+b與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動.設點P的運動時間為t秒.①若點P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.20.(6分)嘉淇同學利用業余時間進行射擊訓練,一共射擊7次,經過統計,制成如圖12所示的折線統計圖.這組成績的眾數是;求這組成績的方差;若嘉淇再射擊一次(成績為整數環),得到這8次射擊成績的中位數恰好就是原來7次成績的中位數,求第8次的射擊成績的最大環數.21.(6分)如圖,點D為△ABC邊上一點,請用尺規過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)22.(8分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標;(2)當△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標.23.(8分)在平面直角坐標系中,O為原點,點A(3,0),點B(0,4),把△ABO繞點A順時針旋轉,得△AB′O′,點B,O旋轉后的對應點為B′,O.(1)如圖1,當旋轉角為90°時,求BB′的長;(2)如圖2,當旋轉角為120°時,求點O′的坐標;(3)在(2)的條件下,邊OB上的一點P旋轉后的對應點為P′,當O′P+AP′取得最小值時,求點P′的坐標.(直接寫出結果即可)24.(10分)如圖,已知矩形OABC的頂點A、C分別在x軸的正半軸上與y軸的負半軸上,二次函數的圖像經過點B和點C.(1)求點A的坐標;(2)結合函數的圖象,求當y<0時,x的取值范圍.25.(10分)如圖,在△ABC中,∠C=90°,∠CAB=50°,按以下步驟作圖:①以點A為圓心,小于AC長為半徑畫弧,分別交AB、AC于點E、F;②分別以點E、F為圓心,大于EF長為半徑畫弧,兩弧相交于點G;③作射線AG,交BC邊于點D.則∠ADC的度數為()A.40° B.55° C.65° D.75°26.(12分)如圖,直線y=x+2與雙曲線y=相交于點A(m,3),與x軸交于點C.求雙曲線的解析式;點P在x軸上,如果△ACP的面積為3,求點P的坐標.27.(12分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數表達式.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,與三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大小.【詳解】∵四邊形ABCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.2、D【解析】

根據點M(a,2a)在反比例函數y=的圖象上,可得:,然后解方程即可求解.【詳解】因為點M(a,2a)在反比例函數y=的圖象上,可得:,,解得:,故選D.【點睛】本題主要考查反比例函數圖象的上點的特征,解決本題的關鍵是要熟練掌握反比例函數圖象上點的特征.3、D【解析】

根據整式的運算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點睛】此題考查整式的混合運算,解題的關鍵在于利用整式的運算法則進行化簡求得代數式的值4、C【解析】

解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【點睛】本題考查平行線的判定,難度不大.5、C【解析】

根據函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數與x軸有一個交點,當m≠0時,函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關鍵是明確題意,利用分類討論的數學思想解答.6、A【解析】

首先利用勾股定理計算出AC的長,再根據折疊可得△DEC≌△D′EC,設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據勾股定理得AC=5根據折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.7、B【解析】根據題意和函數的圖像,可知拋物線的對稱軸為直線x=-=1,即b=-4a,變形為4a+b=0,所以(1)正確;由x=-3時,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正確;因為拋物線與x軸的一個交點為(-1,0)可知a-b+c=0,而由對稱軸知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函數的圖像開口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正確;根據圖像可知當x<1時,y隨x增大而增大,當x>1時,y隨x增大而減小,可知若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數圖象上,則y1=y3<y1,故(4)不正確;根據函數的對稱性可知函數與x軸的另一交點坐標為(5,0),所以若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<x1,故(5)正確.正確的共有3個.故選B.點睛:本題考查了二次函數圖象與系數的關系:二次函數y=ax1+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點.

拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定,△=b1﹣4ac>0時,拋物線與x軸有1個交點;△=b1﹣4ac=0時,拋物線與x軸有1個交點;△=b1﹣4ac<0時,拋物線與x軸沒有交點.8、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將27100用科學記數法表示為:.2.71×104.故選:C.【點睛】本題考查科學記數法—表示較大的數。9、A【解析】

直接根據圓周角定理即可得出結論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.10、C【解析】

如果一組數據有奇數個,那么把這組數據從小到大排列后,排在中間位置的數是這組數據的中位數;如果一組數據有偶數個,那么把這組數據從小到大排列后,排在中間位置的兩個數的平均數是這組數據的中位數.一組數據中出現次數最多的數據叫做眾數.【詳解】解:∵7出現了2次,出現的次數最多,∴眾數是7;∵從小到大排列后是:1,2,3,6,7,7,9,排在中間的數是6,∴中位數是6故選C.【點睛】本題考查了中位數和眾數的求法,解答本題的關鍵是熟練掌握中位數和眾數的定義.11、A【解析】

先計算括號內分式的減法,再將除法轉化為乘法,最后約分即可化簡原式,繼而將3x=4y代入即可得.【詳解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故選:A.【點睛】本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式的混合運算順序和運算法則.12、D【解析】

根據分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點睛】本題考查分式有意義的條件,解題的關鍵是熟練運用分式有意義的條件,本題屬于基礎題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】

已知△ABO是等邊三角形,通過作高BC,利用等邊三角形的性質可以求出OB和OC的長度;由于Rt△OBC中一條直角邊和一條斜邊的長度已知,根據勾股定理還可求出BC的長度,進而確定點B的坐標;將點B的坐標代入反比例函數的解析式中,即可求出k的值.【詳解】過點B作BC垂直OA于C,∵點A的坐標是(2,0),∴AO=2,∵△ABO是等邊三角形,∴OC=1,BC=,∴點B的坐標是把代入,得故答案為.【點睛】考查待定系數法確定反比例函數的解析式,只需求出反比例函數圖象上一點的坐標;14、(50﹣).【解析】

過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數學模型,把實際問題轉化為數學問題.15、1【解析】

根據這組數據的平均數是1和平均數的計算公式列式計算即可.【詳解】∵數據1,1,3,的平均數是1,∴,解得:.故答案為:1.【點睛】本題考查了平均數的定義,根據平均數的定義建立方程求解是解題的關鍵.16、.【解析】解:如圖,連接AN,由題意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案為.點睛:此題是解直角三角形的應用﹣﹣﹣仰角和俯角,主要考查了垂直平分線的性質,等腰三角形的性質,解本題的關鍵是求出∠ANB=45°.17、<【解析】

根據反比例函數的性質即可解答.【詳解】當x=2時,,∵k=6時,∴y隨x的增大而減小∴x>2時,y<3故答案為:<【點睛】此題主要考查了反比例函數的性質,解題的關鍵在于利用反比例函數圖象上點的坐標特點判斷函數值的取值范圍.18、【解析】分析:直接根據題意表示出三角形的各邊,進而利用銳角三角函數關系得出答案.詳解:如圖所示:∵∠C=90°,tanA=,∴設BC=x,則AC=2x,故AB=x,則sinB=.故答案為:.點睛:此題主要考查了銳角三角函數關系,正確表示各邊長是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)4,5;(2)①7;②4或或或8.【解析】

分別令可得b和m的值;根據的面積公式列等式可得t的值;存在,分三種情況:當時,如圖1,當時,如圖2,當時,如圖3,分別求t的值即可.【詳解】把點代入直線中得:,點,直線過點C,,;由題意得:,中,當時,,,,中,當時,,,,,的面積為10,,,則t的值7秒;存在,分三種情況:當時,如圖1,過C作于E,,,即;當時,如圖2,,,;當時,如圖3,,,,,,,即;綜上,當秒或秒或秒或8秒時,為等腰三角形.【點睛】本題屬于一次函數綜合題,涉及的知識有:待定系數法求一次函數解析式,坐標與圖形性質,勾股定理,等腰三角形的判定,以及一次函數與坐標軸的交點,熟練掌握性質及定理是解本題的關鍵,并注意運用分類討論的思想解決問題.20、(1)10;(2);(3)9環【解析】

(1)根據眾數的定義,一組數據中出現次數最多的數,結合統計圖得到答案.(2)先求這組成績的平均數,再求這組成績的方差;(3)先求原來7次成績的中位數,再求第8次的射擊成績的最大環數.【詳解】解:(1)在這7次射擊中,10環出現的次數最多,故這組成績的眾數是10;(2)嘉淇射擊成績的平均數為:,方差為:.(3)原來7次成績為7899101010,原來7次成績的中位數為9,當第8次射擊成績為10時,得到8次成績的中位數為9.5,當第8次射擊成績小于10時,得到8次成績的中位數均為9,因此第8次的射擊成績的最大環數為9環.【點睛】本題主要考查了折線統計圖和眾數、中位數、方差等知識.掌握眾數、中位數、方差以及平均數的定義是解題的關鍵.21、見解析【解析】

以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【詳解】解:如圖,點E即為所求作的點.【點睛】本題主要考查作圖-相似變換,根據相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關鍵.22、(1)y=x2﹣x,點D的坐標為(2,﹣);(2)t=2;(3)M點的坐標為(2,0)或(6,0).【解析】

(1)利用待定系數法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標;(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),根據相似三角形的判定方法,當時,△AME∽△COD,即|t-4|:4=|t2-t|:,當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應的M點的坐標.【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當CM⊥OA時,CM的值最小,△AMN的周長最小,此時OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當時,△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時M點坐標為(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此時M點坐標為(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);綜上所述,M點的坐標為(2,0)或(6,0).【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質、平行四邊形的性質和菱形的判定與性質;會利用待定系數法求函數解析式;理解坐標與圖形性質;熟練掌握相似三角形的判定方法;會運用分類討論的思想解決數學問題.23、(1)5;(2)O'(,);(3)P'(,).【解析】

(1)先求出AB.利用旋轉判斷出△ABB'是等腰直角三角形,即可得出結論;(2)先判斷出∠HAO'=60°,利用含30度角的直角三角形的性質求出AH,OH,即可得出結論;(3)先確定出直線O'C的解析式,進而確定出點P的坐標,再利用含30度角的直角三角形的性質即可得出結論.【詳解】解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋轉知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;(2)如圖2,過點O'作O'H⊥x軸于H,由旋轉知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();(3)由旋轉知,AP=AP',∴O'P+AP'=O'P+AP.如圖3,作A關于y軸的對稱點C,連接O'C交y軸于P,∴O'P+AP=O'P+CP=O'C,此時,O'P+AP的值最小.∵點C與點A關于y軸對稱,∴C(﹣3,0).∵O'(),∴直線O'C的解析式為y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().【點睛】本題是幾何變換綜合題,考查了旋轉的性質,等腰直角三角形的性質,含30度角的直角三角形的性質,構造出直角三角形是解答本題的關鍵.24、(1);(2)【解析】

(1)當時,求出點C的坐標,根據四邊形為矩形,得出點B的坐標,進而求出點A即可;(2)先求出拋物線圖象與x軸的兩個交點,結合圖象即可得出.【詳解】解:(1)當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論