2022年湖北省武漢大附中中考數學考試模擬沖刺卷含解析_第1頁
2022年湖北省武漢大附中中考數學考試模擬沖刺卷含解析_第2頁
2022年湖北省武漢大附中中考數學考試模擬沖刺卷含解析_第3頁
2022年湖北省武漢大附中中考數學考試模擬沖刺卷含解析_第4頁
2022年湖北省武漢大附中中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年湖北省武漢大附中中考數學考試模擬沖刺卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC是⊙O的內接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.52.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數為()A.110° B.115° C.120° D.130°3.如圖,四邊形ABCD內接于⊙O,點I是△ABC的內心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數為()A.56° B.62° C.68° D.78°4.已知圓心在原點O,半徑為5的⊙O,則點P(-3,4)與⊙O的位置關系是()A.在⊙O內B.在⊙O上C.在⊙O外D.不能確定5.下列命題正確的是()A.內錯角相等B.-1是無理數C.1的立方根是±1D.兩角及一邊對應相等的兩個三角形全等6.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.沒有實數根 D.無法判斷7.如圖,在正方形ABCD中,點E,F分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④8.中國古代在利用“計里畫方”(比例縮放和直角坐標網格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.9.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球10.函數y=中自變量x的取值范圍是A.x≥0 B.x≥4 C.x≤4 D.x>4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直線l上向右作無滑動的翻滾,每繞著一個頂點旋轉60°叫一次操作,則經過6次這樣的操作菱形中心(對角線的交點)O所經過的路徑總長為_____.12.二次函數y=(x﹣2m)2+1,當m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.13.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標分別為1和5,則不等式k1x<+b的解集是▲.14.已知:如圖,△ABC內接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.15.豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數關系式為h=﹣2t2+mt+,若小球經過秒落地,則小球在上拋的過程中,第____秒時離地面最高.16.若一元二次方程有兩個不相等的實數根,則k的取值范圍是.17.已知一組數據1,2,x,2,3,3,5,7的眾數是2,則這組數據的中位數是.三、解答題(共7小題,滿分69分)18.(10分)在等邊△ABC外側作直線AM,點C關于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數;(2)如圖2,當∠MAC=30°時,判斷線段BE與DE之間的數量關系,并加以證明;(3)若0°<∠MAC<120°,當線段DE=2BE時,直接寫出∠MAC的度數.19.(5分)如圖,二次函數y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.(1)求二次函數的表達式;(2)當﹣<x<1時,請求出y的取值范圍;(3)連接AD,線段OC上有一點E,點E關于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.20.(8分)如圖,正方形ABCD中,BD為對角線.(1)尺規作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若AB=4,求△DEF的周長.21.(10分)已知:如圖,,,.求證:.22.(10分)如圖,已知△ABC內接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當∠B=時,四邊形OCAD是菱形;②當∠B=時,AD與相切.23.(12分)計算:1224.(14分)已知關于x的一元二次方程為常數.求證:不論m為何值,該方程總有兩個不相等的實數根;若該方程一個根為5,求m的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點睛】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.2、A【解析】試題分析:首先根據三角形的外角性質得到∠1+∠2=∠4,然后根據平行線的性質得到∠3=∠4求解.解:根據三角形的外角性質,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質以及三角形的外角性質,屬于基礎題,難度較小.3、C【解析】分析:由點I是△ABC的內心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內接四邊形的外角等于內對角可得答案.詳解:∵點I是△ABC的內心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內接于⊙O,∴∠CDE=∠B=68°,故選C.點睛:本題主要考查三角形的內切圓與內心,解題的關鍵是掌握三角形的內心的性質及圓內接四邊形的性質.4、B.【解析】試題解析:∵OP=5,∴根據點到圓心的距離等于半徑,則知點在圓上.故選B.考點:1.點與圓的位置關系;2.坐標與圖形性質.5、D【解析】解:A.兩直線平行,內錯角相等,故A錯誤;B.-1是有理數,故B錯誤;C.1的立方根是1,故C錯誤;D.兩角及一邊對應相等的兩個三角形全等,正確.故選D.6、B【解析】

試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數根.故選B.考點:根的判別式.7、C【解析】

①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質就可以得出EC=FC,就可以得出AC垂直平分EF,②設BC=a,CE=y,由勾股定理就可以得出EF與x、y的關系,表示出BE與EF,即可判斷BE+DF與EF關系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出x與y的關系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點睛】本題考查了正方形的性質的運用,全等三角形的判定及性質的運用,勾股定理的運用,等邊三角形的性質的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質解題時關鍵.8、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.9、A【解析】

根據必然事件的概念:在一定條件下,必然發生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.10、B【解析】

根據二次根式的性質,被開方數大于等于0,列不等式求解.【詳解】根據題意得:x﹣1≥0,解得x≥1,則自變量x的取值范圍是x≥1.故選B.【點睛】本題主要考查函數自變量的取值范圍的知識點,注意:二次根式的被開方數是非負數.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

第一次旋轉是以點A為圓心,那么菱形中心旋轉的半徑就是OA,解直角三角形可求出OA的長,圓心角是60°.第二次還是以點A為圓心,那么菱形中心旋轉的半徑就是OA,圓心角是60°.第三次就是以點B為旋轉中心,OB為半徑,旋轉的圓心角為60度.旋轉到此菱形就又回到了原圖.故這樣旋轉6次,就是2個這樣的弧長的總長,進而得出經過6次這樣的操作菱形中心O所經過的路徑總長.【詳解】解:∵菱形ABCD中,AB=4,∠C=60°,∴△ABD是等邊三角形,BO=DO=2,AO==,第一次旋轉的弧長=,∵第一、二次旋轉的弧長和=+=,第三次旋轉的弧長為:,故經過6次這樣的操作菱形中心O所經過的路徑總長為:2×(+)=.故答案為:.【點睛】本題考查菱形的性質,翻轉的性質以及解直角三角形的知識.12、m>1【解析】由條件可知二次函數對稱軸為x=2m,且開口向上,由二次函數的性質可知在對稱軸的左側時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數的性質,掌握當拋物線開口向下時,在對稱軸右側y隨x的增大而減小是解題的關鍵.13、-2<x<-1或x>1.【解析】不等式的圖象解法,平移的性質,反比例函數與一次函數的交點問題,對稱的性質.不等式k1x<+b的解集即k1x-b<的解集,根據不等式與直線和雙曲線解析式的關系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據函數圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標關于原點對稱.由關于原點對稱的坐標點性質,直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標為A、B兩點橫坐標的相反數,即為-1,-2.∴由圖知,當-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.14、2﹣π.【解析】試題分析:根據題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.15、.【解析】

首先根據題意得出m的值,進而求出t=﹣的值即可求得答案.【詳解】∵豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數關系式為h=﹣2t2+mt+,小球經過秒落地,∴t=時,h=0,則0=﹣2×()2+m+,解得:m=,當t=﹣=﹣時,h最大,故答案為:.【點睛】本題考查了二次函數的應用,正確得出m的值是解題關鍵.16、:k<1.【解析】

∵一元二次方程有兩個不相等的實數根,∴△==4﹣4k>0,解得:k<1,則k的取值范圍是:k<1.故答案為k<1.17、2.1【解析】試題分析:∵數據1,2,x,2,3,3,1,7的眾數是2,∴x=2,∴這組數據的中位數是(2+3)÷2=2.1;故答案為2.1.考點:1、眾數;2、中位數三、解答題(共7小題,滿分69分)18、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】

(1)根據軸對稱作出圖形,先判斷出∠ABD=∠ADB=y,再利用三角形的內角和得出x+y即可得出結論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結論.【詳解】(1)補全圖形如圖1所示,根據軸對稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y.在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時,沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質,軸對稱的性質,等腰三角形的性質,三角形的內角和定理,作出圖形是解本題的關鍵.19、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解析】

(1)利用對稱軸公式求出m的值,即可確定出解析式;(1)根據x的范圍,利用二次函數的增減性確定出y的范圍即可;(3)根據題意確定出D與A坐標,進而求出直線AD解析式,設出E坐標,利用對稱性確定出E坐標即可.【詳解】(1)∵拋物線對稱軸為直線x=﹣1,∴﹣=﹣1,即m=﹣1,則二次函數解析式為y=﹣x1﹣1x+6;(1)當x=﹣時,y=;當x=1時,y=.∵﹣<x<1位于對稱軸右側,y隨x的增大而減小,∴<y<;(3)當x=﹣1時,y=8,∴頂點D的坐標是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵點A在點B的左側,∴點A坐標為(﹣6,0).設直線AD解析式為y=kx+b,可得:,解得:,即直線AD解析式為y=1x+11.設E(0,n),則有E′(﹣4,n),代入y=1x+11中得:n=4,則點E坐標為(0,4).【點睛】本題考查了拋物線與x軸的交點,以及二次函數的性質,熟練掌握二次函數的性質是解答本題的關鍵.20、(1)見解析;(2)2+1.【解析】分析:(1)、根據中垂線的做法作出圖形,得出答案;(2)、根據中垂線和正方形的性質得出DF、DE和EF的長度,從而得出答案.詳解:(1)如圖,EF為所作;(2)解:∵四邊形ABCD是正方形,∴∠BDC=15°,CD=BC=1,又∵EF垂直平分CD,∴∠DEF=90°,∠EDF=∠EFD=15°,DE=EF=CD=2,∴DF=DE=2,∴△DEF的周長=DF+DE+EF=2+1.點睛:本題主要考查的是中垂線的性質,屬于基礎題型.理解中垂線的性質是解題的關鍵.21、見解析【解析】

先通過∠BAD=∠CAE得出∠BAC=∠DAE,從而證明△ABC≌△ADE,得到BC=DE.【詳解】證明:∵∠BAD=∠CAE,

∴∠BAD+∠DAC=∠CAE+∠DAC.

即∠BAC=∠D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論