




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
圓的問題
專題知識(shí)回顧
一、與圓有關(guān)的概念與規(guī)律
1.圓:平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。圓的半
徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
2.圓的性質(zhì):(1)圓具有旋轉(zhuǎn)不變性;(2)圓具有軸對稱性;(3)圓具有中心對稱性。
3.垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧。
4.推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
5.圓心角:頂點(diǎn)在圓心上的角叫做圓心角。圓心角的度數(shù)等于它所對弧的度數(shù)。
6.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也
相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也
相等。
7.圓周角:頂點(diǎn)在圓周上,并且兩邊分別與圓相交的角叫做圓周角。
8.在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
9.半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.
10.點(diǎn)和圓的位置關(guān)系:
①點(diǎn)在圓內(nèi)0點(diǎn)到圓心的距離小于半徑
②點(diǎn)在圓上0點(diǎn)到圓心的距離等于半徑
③點(diǎn)在圓外0點(diǎn)到圓心的距離大于半徑
11.過三點(diǎn)的圓:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
12.外接圓和外心:經(jīng)過三角形的三個(gè)頂點(diǎn)可以做一個(gè)圓,這個(gè)圓叫做三角形的外接圓。
外接圓的圓心,叫做三角形的外心。外心是三角形三條邊垂直平分線的交點(diǎn)。外心到三角形三個(gè)頂點(diǎn)的距
離相等。
13.若四邊形的四個(gè)頂點(diǎn)都在同一個(gè)圓上,這個(gè)四邊形叫做圓內(nèi)接四邊形,這個(gè)圓叫做這個(gè)四邊形的外接
圓。
14.圓內(nèi)接四邊形的特征:
①圓內(nèi)接四邊形的對角互補(bǔ);
②圓內(nèi)接四邊形任意一個(gè)外角等于它的內(nèi)對角。
15.直線與圓有3種位置關(guān)系:
如果。。的半徑為r,圓心。到直線1的距離為d,那么
①直線’和。0相交od<r.
②直線,和。0相切od=r.
d>r
③直線,和。0相離=o
16.和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。內(nèi)心是三角形三個(gè)角的角
平分線的交點(diǎn)。內(nèi)心到三角形三邊的距離相等。
17.切線的性質(zhì)
(1)經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線。
(2)經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心。
(3)圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
18.切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。
19.切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,并且圓心和這一點(diǎn)的連線平分兩條切
線的夾角。
20.設(shè)圓。的半徑為廣,圓。的半徑為廣,兩個(gè)圓的圓心距d=l。。I,則:
112212
兩圓外離=d〉廠+廠;
12
兩圓外切=d=廠+廠;
12
兩圓相交=1/一廠\<d<r;
1212
兩圓內(nèi)切=d=1廠一廠I;
12
兩圓內(nèi)含<=>t/<1r-rI
12
21.圓中幾個(gè)關(guān)鍵元素之間的相互轉(zhuǎn)化
弧、弦、圓心角、圓周角等都可以通過相等來互相轉(zhuǎn)化這在圓中的證明和計(jì)算中經(jīng)常用到.
22.與圓有關(guān)的公式
設(shè)圓的周長為r,貝
(1)求圓的直徑公式d=2r
(2)求圓的周長公式C=2Jtr
(3)求圓的面積公式S=“r2
二、解題要領(lǐng)
1.判定切線的方法:
(1)若切點(diǎn)明確,則“連半徑,證垂直”。常見手法有全等轉(zhuǎn)化;平行轉(zhuǎn)化;直徑轉(zhuǎn)化;中線轉(zhuǎn)化等;有
時(shí)可通過計(jì)算結(jié)合相似、勾股定理證垂直;
(2)若切點(diǎn)不明確,則“作垂直,證半徑”。常見手法有角平分線定理;等腰三角形三線合一,隱藏角平
分線;
總而言之,要完成兩個(gè)層次的證明:
①直線所垂直的是圓的半徑(過圓上一點(diǎn));
②直線與半徑的關(guān)系是互相垂直。在證明中的關(guān)鍵是要處理好弧、弦、角之間的相互轉(zhuǎn)化要善于進(jìn)行由此
及彼的聯(lián)想、要總結(jié)常添加的輔助線.
2.與圓有關(guān)的計(jì)算:
計(jì)算圓中的線段長或線段比,通常與勾股定理、垂徑定理與三角形的全等、相似等知識(shí)的結(jié)合,形式
復(fù)雜,無規(guī)律性。分析時(shí)要重點(diǎn)注意觀察已知線段間的關(guān)系,選擇定理進(jìn)行線段或者角度的轉(zhuǎn)化。特別是
要借助圓的相關(guān)定理進(jìn)行弧、弦、角之間的相互轉(zhuǎn)化,找出所求線段與已知線段的關(guān)系,從而化未知為己
知,解決問題。其中重要而常見的數(shù)學(xué)思想方法有:
(1)構(gòu)造思想:①構(gòu)建矩形轉(zhuǎn)化線段;②構(gòu)建“射影定理”基本圖研究線段(已知任意兩條線段可求其它
所有線段長);③構(gòu)造垂徑定理模型:弦長一半、弦心距、半徑;④構(gòu)造勾股定理模型;⑤構(gòu)造三角函數(shù)
(2)方程思想:設(shè)出未知數(shù)表示關(guān)鍵線段,通過線段之間的關(guān)系,特別是發(fā)現(xiàn)其中的相等關(guān)系建立方程,
解決問題。
(3)建模思想:借助基本圖形的結(jié)論發(fā)現(xiàn)問題中的線段關(guān)系,把問題分解為若干基本圖形的問題,通過基
本圖形的解題模型快速發(fā)現(xiàn)圖形中的基本結(jié)論,進(jìn)而找出隱藏的線段之間的數(shù)量關(guān)系。
專題典型題考法及解析
【例題1】(2019?山東省濱州市)如圖,AB為。。的直徑,C,D為。。上兩點(diǎn),若/BCD=40°,則/ABD
的大小為()
A.60°B.50°C.40°D.20°
【答案】B
【解析】考點(diǎn)是圓周角定理。本題考查的是圓周角定理,根據(jù)題意作出輔助線,構(gòu)造出圓周角是解答此題
的關(guān)鍵.連接AD,先根據(jù)圓周角定理得出/A及NADB的度數(shù),再由直角三角形的性質(zhì)即可得出結(jié)論.
連接AD,
:AB為。。的直徑,AZADB=90°.
VZBCD=40°,AZA=ZBCD=40°,
.\ZABD=90°-40°=50°.
【例題2】(2019?南京)如圖,PA.PB是。。的切線,A.B為切點(diǎn),點(diǎn)C.D在。。上.若NP=102°,則/A+
【答案】219°.
【解析】連接AB,根據(jù)切線的性質(zhì)得到PA=PB,根據(jù)等腰三角形的性質(zhì)得到/PAB=/PBA得(180°-
102°)=39°,由圓內(nèi)接四邊形的性質(zhì)得到/DAB+NC=180。,于是得到結(jié)論.
連接AB,
???PA.PB是。。的切線,.\PA=PB,
VZP=102",AZPAB=ZPBA=—(180°-102°)=39°,
2
VZDAB+ZC=180°,
AZPAD4-ZC=ZPABI-ZDAA-ZC=180°+39°=219°
【例題3】(2019?甘肅武威)如圖,在AABC中,AB=AC,ZBAC=120°,點(diǎn)D在BC邊上,OD經(jīng)過點(diǎn)A和
點(diǎn)B且與BC邊相交于點(diǎn)E.
(1)求證:AC是。D的切線;
(2)若CE=2?,求。D的半徑.
【答案】見解析。
【解析】本題考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),等邊三角形的判定和性質(zhì),正確的作出輔助
線是解題的關(guān)鍵.
(1)連接AD,根據(jù)等腰三角形的性質(zhì)得到NB=/C=30。,ZBAD=ZB=30°,求得/ADC=60°,根據(jù)
三角形的內(nèi)角和得到/DAC=180。-60°-30°=90°,于是得到AC是。D的切線;
證明:連接AD,
VAB=AC,ZBAC=120°,
.".ZB=ZC=30O,
VAD=BD,AZBAD=ZB=30°,:.ZADC=60°,
.\ZDAC=180°-60°-30°=90°,
.?.AC是。D的切線;
(2)連接AE,推出4ADE是等邊三角形,得到AE=DE,ZAED=60°,求得/EAC=/AED-/C=30°,得
至|JAE=CE=26,于是得到結(jié)論.
連接AE,
VAD=DE,NADE=60°,
.'.△ADE是等邊三角形,.?.AE=DE,NAED=60°,
???NEAC=ZAED-ZC=30°,NEAC=ZC,
,-.AE=CE=2V3,?D的半徑AD=2V3.
【例題4】(2019?江蘇蘇州)如圖,AE為e。的直徑,D是弧BC的中點(diǎn)BC與AD,OD分別交于點(diǎn)E,F.
(1)求證:DO//AC;
(2)求證:DEDA=DC2;
(3)若tanACAD=1,求sinZCDA的值.
2
【答案】見解析。
【解析】(1)證明::D為弧BC的中點(diǎn),0D為e。的半徑
/.ODLBC
又為eO的直徑
/.ZACB=90°/.AC//OD
(2)證明::D為弧BC的中點(diǎn)
,&D=*D:.NDCB=ADAC:.NDCE^/^DAC
.DCDE
即DE-DA=DC2
'DA-DC
⑶解:VADCE^ADAC,tanZCA£>=-
2
.CDDECE1
"DA-5c-AC-2
設(shè)CD=2a,則DE=a,DA=4a
又?:AC//OD:.KXEC^DEF
—=3所以=
EFDE3
5LAC=2CEAAB=—CE
,3
3
即sinZCDA=sinZCBA=—=-
AB5
專題典型訓(xùn)練題
一、選擇題
1.(2019甘肅隴南)如圖,點(diǎn)A,B,S在圓上,若弦AB的長度等于圓半徑的血倍,則/ASB的度數(shù)是()
A.22.5°B.30°C.45°D.60°
【答案】C.
【解析】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的
圓心角的一半.
設(shè)圓心為0,連接0A.0B,如圖,先證明MAB為等腰直角三角形得到NA0B=90°,然后根據(jù)圓周角定理確
定/ASB的度數(shù).
設(shè)圓心為0,連接0A.0B,如圖,
???弦AB的長度等于圓半徑的6倍,
即AB=6OA,
/.0A2+0B2=AB2,
???△0AB為等腰直角三角形,NA0B=90。,
AZASB=—ZA0B=45°.
2
2.(2019?山東省聊城市)如圖,BC是半圓。的直徑,D,E是BC上兩點(diǎn),連接BD,CE并延長交于點(diǎn)A,連
接0D,0E.如果/A=70°,那么/DOE的度數(shù)為()
A.35°B.38°C.40°D.42°
【答案】C.
【解析】考點(diǎn)是圓周角定理、直角三角形的性質(zhì)。連接CD,由圓周角定理得出NBDC=90°,求出/ACD=
90°-ZA=20°,再由圓周角定理得出ND0E=2NACD=40°即可,
連接CD,如圖所示:
「BC是半圓0的直徑,AZBDC=90°,:.ZADC=90°,
.,.ZACD=90°-ZA=20°,AZD0E=2ZACD=40°
3.(2019?廣西貴港)如圖,AD是。。的直徑,物CD若/A0B=40°,則圓周角/BPC的度數(shù)是()
【答案】B.
【解析】根據(jù)圓周角定理即可求出答案.
;疝=而,ZA0B=40°,
ZC0D=ZA0B=40°,
VZA0BI-ZB0C+ZC0D=180O,
.\ZB0C=100°,
AZBPC=-=-ZB0C=50°
2
4.(2019?湖北天門)如圖,AB為。。的直徑,BC為。。的切線,弦AD〃OC,直線CD交BA的延長線于點(diǎn)E,
連接BD.下列結(jié)論:①CD是。。的切線;②COLDB;③△EDAS^EBD;(4)ED-BC=BO-BE.其中正確結(jié)論的
個(gè)數(shù)有()
【答案】A
【解析】本題主要考查了切線的判定、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì),注意掌握
輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用是解答此題的關(guān)鍵.
連結(jié)DO.
?;AB為。。的直徑,BC為。。的切線,.?./CB0=90°,
AD//OC,NDAO=NCOB,NADO=NCOD.
又VOA=OD,NDA0=NADO,NC0D=NCOB.
CO二DO
在△COD和△COB中,ZCOD=ZCOB,
OD=OB
.".△COD^ACOB(SAS),
.,.ZCD0=ZCB0=90°.
又?.?點(diǎn)D在。。上,
,CD是。。的切線;故①正確,
VACOD^ACOB,ACD=CB,
VOD=OB,.x。垂直平分DB,
即COLDB,故②正確;
???AB為。。的直徑,DC為。。的切線,.?.NED0=/ADB=90°,
NEDA+NADO=NBD(KNAD0=90°,NADE=NBDO,
OD=OB,NODB=NOBD,:.NEDA=NDBE,
VZE=ZE,/.AEDA^AEBD,故③正確;
NEDO=NEBC=90°,NE=NE,
ZkEODsAECB,
,EDOP
??一,
BEBC
VOD=OB,
.\ED-BC=BO-BE,故④正確.
5.(2019?山東省德州市)如圖,點(diǎn)。為線段BC的中點(diǎn),點(diǎn)A,C,D到點(diǎn)0的距離相等,若/ABC=40°,
則/ADC的度數(shù)是()
【答案】B.
【解析】根據(jù)題意得到四邊形ABCD共圓,利用圓內(nèi)接四邊形對角互補(bǔ)即可求出所求角的度數(shù).由題意得到
OA=OB=OC=OD,作出圓0,如圖所示,
四邊形ABCD為圓0的內(nèi)接四邊形,
ZABC+ZADC=180°,
?:ZABC=40°,AZADC=140°
6.(2019湖南益陽)如圖,PA、PB為圓。的切線,切點(diǎn)分別為A、B,P0交AB于點(diǎn)C,P0的延長線交圓0
于點(diǎn)D,下列結(jié)論不一定成立的是()
A.PA=PBB.ZBPD=ZAPDC.AB±PDD.AB平分PD
【答案】D.
【解析】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.也考查了切線長定理、垂徑定理和等
腰三角形的性質(zhì).
先根據(jù)切線長定理得到PA=PB,ZAPD=ZBPD;再根據(jù)等腰三角形的性質(zhì)得0P_LAB,根據(jù)菱形的性質(zhì),只
有當(dāng)AD〃PB,BD〃PA時(shí),AB平分PD,由此可判斷D不一定成立.
VPA,PB是。。的切線,
.".PA=PB,所以A成立;
ZBPD=ZAPD,所以B成立;
.,.ABXPD,所以C成立;
VPA,PB是。。的切線,
.\AB±PD,且AC=BC,
只有當(dāng)AD〃PB,BD〃PA時(shí),AB平分PD,所以D不一定成立.
7.(2019?廣東廣州)平面內(nèi),。。的半徑為1,點(diǎn)P到。的距離為2,過點(diǎn)P可作。。的切線條數(shù)為()
A.0條B.1條C.2條D.無數(shù)條
【答案】C.
【解析】此題主要考查了對點(diǎn)與圓的位置關(guān)系,切線的定義,切線就是與圓有且只有1個(gè)公共點(diǎn)的直線,
理解定義是關(guān)鍵.
先確定點(diǎn)與圓的位置關(guān)系,再根據(jù)切線的定義即可直接得出答案.
????0的半徑為1,點(diǎn)P到圓心0的距離為2,
.\d>r,
.?.點(diǎn)P與。。的位置關(guān)系是:P在。。外,
,??過圓外一點(diǎn)可以作圓的2條切線。
8.(2019?山東泰安)如圖,AABC是。。的內(nèi)接三角形,ZA=119°,過點(diǎn)C的圓的切線交B0于點(diǎn)P,則
ZP的度數(shù)為()
A.32°B.31°C.29°D.61°
【答案】A.
【解析】連接OC、CD,由切線的性質(zhì)得出/0CP=90°,由圓內(nèi)接四邊形的性質(zhì)得出N0DC=180。-ZA=
61°,由等腰三角形的性質(zhì)得出/0CD=/0DC=61°,求出/D0C=58°,由直角三角形的性質(zhì)即可得出結(jié)
果.
如圖所示:連接OC、CD,
;PC是。。的切線,;.PC_LOC,AZ0CP=90°,
VZA=119°,Z0DC=180°-ZA=61°,
V0C=0D,.\Z0CD=Z0DC=61o,
.".ZD0C=180°-2X61°=58°,
:.ZP=90°-ZD0C=32°
9.(2019?湖南益陽)如圖,PA、PB為圓。的切線,切點(diǎn)分別為A、B,P0交AB于點(diǎn)C,P0的延長線交圓0
于點(diǎn)D,下列結(jié)論不一定成立的是()
A.PA=PBB.ZBPD=ZAPDC.AB±PDD.AB平分PD
【答案】D
【解析】先根據(jù)切線長定理得到PA=PB,ZAPD=ZBPD;再根據(jù)等腰三角形的性質(zhì)得OP,AB,根據(jù)菱形的
性質(zhì),只有當(dāng)AD〃PB,BD〃PA時(shí),AB平分PD,由此可判斷D不一定成立.
VPA,PB是。。的切線,,PA=PB,所以A成立;
/BPD=NAPD,所以B成立;
.\AB±PD,所以C成立;
VPA,PB是。。的切線,.'ABUD,且AC=BC,
只有當(dāng)AD〃PB,BD〃PA時(shí),AB平分PD,所以D不一定成立.故選D.
10.(2019湖北荊門)如圖,4ABC內(nèi)心為I,連接AI并延長交AABC的外接圓于D,則線段DI與DB的關(guān)系
是()
A.DI=DBB.DI>DBC.DI<DBD.不確定
【答案】A.
【解析】本題考查了三角形的內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三
角形頂點(diǎn)的連線平分這個(gè)內(nèi)角.也考查了三角形的外接圓和圓周角定理.
連接BI,如圖,根據(jù)三角形內(nèi)心的性質(zhì)得/1=/2,Z5=Z6,再根據(jù)圓周角定理得到N3=/l,然后利
用三角形外角性質(zhì)和角度的代換證明/4=/DBI,從而可判斷DI=DB.
連接BI,如圖,
:△ABC內(nèi)心為I,AZ1=Z2,Z5=Z6,
VZ3=ZL.\Z3=Z2,
VZ4=Z2+Z6=Z3+Z5,
即/4=/DBI,.-.DI=DB.
D
二、填空題
11.(2019廣西北部灣)《九章算術(shù)》作為古代中國乃至東方的第一部自成體系的數(shù)學(xué)專著,與古希臘的《幾
何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》中記載有一問題:“今有圓材埋在壁中,不知大小。以
鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”小輝同學(xué)根據(jù)原文題意,畫出圓材截面圖如圖所示,已知:
鋸口深為1寸,鋸道AB=1尺(1尺=10寸),則該圓材的直徑為寸.
【答案】26.
【解析】本題考查垂徑定理、勾股定理等知識(shí),設(shè)。。的半徑為r.在RtZSADO中,AD=5,0D=r-l,0A=r,
則有r2=5z+(r-l)2,解方程即可.
設(shè)。。的半徑為r.
在RtZ\ADO中,AD=5,0D=r-l,0A=r,
則有r2=5a+(r-l)2,
解得廠13,
,。0的直徑為26寸。
12.(2019黑龍江綏化)半徑為5的00是銳角三角形ABC的外接圓,AB=AC,連接OB,0C,延長C0交弦AB于
點(diǎn)D.若aOBD是直角三角形,則弦BC的長為.
【答案】5/或5萬
【解析】:△OBD為直角三角形,,分類討論:如圖,當(dāng)/B0D=90°時(shí),/B0C=90°,在Rt^BOC中,BO=OC
=5,...BC=5x/I;當(dāng)/0DB=90°時(shí),:OB=OC,設(shè)N0BC=N0CB=x,/B0D=2x,ZB0C=180°-2x,AZ
ABO=90°-2x,ZABC=ZACB=90°—x,/A=2x,:/B0C=2/A,即180—2x=2X2x,,x=30°,AZ
B0C=120°,:0B=0C=5,;.BC=5".綜上所述,BC的長度為5百或5點(diǎn)
13.(2019山東東營)如圖,AC是。0的弦,AC=5,點(diǎn)B是。。上的一個(gè)動(dòng)點(diǎn),且/ABCM5。,若點(diǎn)M、N
分別是AC、BC的中點(diǎn),則MN的最大值是.
▼冰田155/2
【答案】—
【解析】;MN是AABC的中位線,...MN=gAB.
當(dāng)AB為。0的直徑時(shí),AB有最大值,則MN有最大值.
當(dāng)AB為直徑時(shí),ZACB=90°,
VZABO450,AC=5,:.這=58,
14.(2019黑龍江省龍東地區(qū))如圖,在00中,半徑0A垂直于弦BC,點(diǎn)D在圓上,且/ADC=30°,則/
AOB的度數(shù)為.
【答案】600.
【解析】V0A±BC,:.ABAC,.,.ZA0B=2ZADC,
VZADC=30°,AZA0B=60°.
15.(2019江蘇常州)如圖,AB是。。的直徑,C、D是。。上的兩點(diǎn),ZA0C=120°,則/CDB=
【答案】30
【解析】VZB0C=180°-ZA0C=180°-120°=60°,
.../CDB=1NBOC=3O°.
2
16.(2019四川省雅安市)如圖,4ABC內(nèi)接于。0,BD是。0的直徑,ZCBD=21°,則ZA的度數(shù)為.
【答案】69°
【解析】?.,BD是。。的直徑,.?./BCD=90°,VZCBD=21°,AZD=69°,ZA=ZD=69°.
17.(2019安徽)如圖,AABC內(nèi)接于。0,ZCAB=30°,ZCBA=45°,CD^AB于點(diǎn)D,若。。的半徑為2,
則CD的長為.
【答案】V2.
【解析】本題考查了三角形的外接圓與外心,圓周角定理,等腰直角三角形的性質(zhì),正確的作出輔助線是
解題的關(guān)鍵.
連接co并延長交。。于E,連接BE,于是得到/E=/A=30°,/EBC=90°,解直角三角形即可得到結(jié)論.
連接C0并延長交。。于E,連接BE,
則/E=/A=30°,ZEBC=90°,
:。0的半徑為2,.-.CE=4,.*.BC=1-CE=2,
VCDXAB,ZCBA-450,.,.CD-除BC=6
18.(2019?江蘇泰州)如圖,。。的半徑為5,點(diǎn)P在。。上,點(diǎn)A在。。內(nèi),且AP=3,過點(diǎn)A作AP的垂
線交。。于點(diǎn)B.C.設(shè)PB=x,PC=y,則y與x的函數(shù)表達(dá)式為
【答案】y=^x.
【解析】連接PO并延長交。。于D,連接BD,根據(jù)圓周角定理得到/C=/D,ZPBD=90°,求得/PAC=
ZPBD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
連接P。并延長交。。于D,連接BD,
則NC=ND,ZPBD=90°,
VPA±BC,ZPAC=90°,:.ZPAC=ZPBD,
.PBPC
.,.△PACc-APBD,"PA^PD
的半徑為5,AP=3,PB=X,PC=y,
19.(2019?山東省濟(jì)寧市)如圖,0為RtAABC直角邊AC上一點(diǎn),以0C為半徑的。0與斜邊AB相切于
點(diǎn)D,交0A于點(diǎn)E,已知BC=J&,AC=3.則圖中陰影部分的面積是___________.
B.
【解析】本題考查了切線的性質(zhì)定理、切線長定理以及勾股定理的運(yùn)用,熟記和圓有關(guān)的各種性質(zhì)定理是
解題的關(guān)鍵.
在RtAABC中,VBC=V3,AC=3.
AB=\/AC2+BC2=2^
VBC±OC,ABC是圓的切線,
VOO與斜邊AB相切于點(diǎn)D,.?.BD=BC,
.*.AD=AB-BD=2A/3-V3=V3;
在比△ABC中,'.'sinA=-^-=ZA=30°,
AB3V32
VOO與斜邊AB相切于點(diǎn)D,.\OD±AB,AZA0D=90°-ZA=60°,
?喘—30。‘.嗡=冬
/.0D=1,
2
兀7T
AS陰影=60X1
360T
20.(2019?湖北省鄂州市)如圖,在平面直角坐標(biāo)系中,已知C(3,4),以點(diǎn)C為圓心的圓與y軸相切.點(diǎn)
A、B在x軸上,且OA=OB.點(diǎn)P為。C上的動(dòng)點(diǎn),ZAPB=90°,則AB長度的最大值為
y
【答案】16.
【解析】連接0C并延長,交。C上一點(diǎn)P,以。為圓心,以0P為半徑作。0,交x軸于A、B,此時(shí)AB的長
度最大,
*.,C⑶4),/.0C=^j2,I,2=5,
..?以點(diǎn)C為圓心的圓與y軸相切.;.OC的半徑為3,.?.0P=0A=0B=8,
「AB是直徑,.?.NAPB=90°,;.AB長度的最大值為16。
三、解答題
21.(2019?南京)如圖,。。的弦AB.CD的延長線相交于點(diǎn)P,且AB=CD.求證:PA=PC.
【答案】見解析。
【解析】本題考查了圓心角、弧、弦的關(guān)系,圓周角定理,等腰三角形的判定等,熟練掌握性質(zhì)定理是解
題的關(guān)鍵.
連接AC,由圓心角、弧、弦的關(guān)系得出忘=5,進(jìn)而得出俞=聲,根據(jù)等弧所對的圓周角相等得出NC
=/A,根據(jù)等角對等邊證得結(jié)論.
證明:連接AC,
?;AB=CD,AB=CD,
/.^+BD=M+CD,即金="S,
.?.NC=NA,PA=PC.
A
B
22.(2019?湖南株洲)四邊形ABCD是。。的圓內(nèi)接四邊形,線段AB是。。的直徑,連結(jié)AC.BD.點(diǎn)H是線
段BD上的一點(diǎn),連結(jié)AH、CH,且NACH=/CBD,AD=CH,BA的延長線與CD的延長線相交與點(diǎn)P.
(1)求證:四邊形ADCH是平行四邊形;
(2)若AC=BC,PB=/SPD,AB+CD=2(再+1)
①求證:ADHC為等腰直角三角形;
②求CH的長度.
【答案】見解析。
【解析】本題是圓的綜合題,考查了圓的有關(guān)知識(shí),平行四邊形的判定和性質(zhì),相似三角形的判定和性質(zhì)
等知識(shí),求CD的長度是本題的關(guān)鍵.
(1)由圓周角的定理可得NDBC=/DAC=/ACH,可證AD〃CH,由一組對邊平行且相等的是四邊形是平行
四邊形可證四邊形ADCH是平行四邊形;
(2)①由平行線的性質(zhì)可證NADH=NCHD=90°,由NCDB=NCAB=45°,可證ADH
為等腰直角三角形;
②通過證明△ADPs^CBP,可得絲晶,可得我"i,通過證明△CHDS/^ACB,可慮■朵T,可
BCPBBCV5ABBCV5
得AB=J兄D,可求CD=2,由等腰直角三角形的性質(zhì)可求CH的長度.
證明:(1)VZDBC=ZDAC,ZACH=ZCBD
ZDAC=ZACH,AAD//CH,且AD=CH
四邊形ADCH是平行四邊形
(2)①:AB是直徑
.\ZACB=90°=ZADB,且AC=BC
NCAB=NABC=45°,.,?NCDB=NCAB=45°
;AD〃CH
,.ZADH=ZCHD=90O,且/CDB=45°
.\ZCDB=ZDCH=45°,.\CH=DH,且NCHD=90°
.??△DHC為等腰直角三角形;
②???四邊形ABCD是。。的圓內(nèi)接四邊形,
?.ZADP=ZPBC,且/P=NP,AADP^ACBP
.ADPD,且PB=J^PD,
'BC
.AD_1.CH_1
.而市,AD=CH,..而市
/ZCDB=ZCAB=45°,ZCHD=ZACB=90°.,.ACHD^AACB
噌親金,AB=aCD
ADDCV5,
??AB+CD=2(a+1),.?.限D(zhuǎn)+CD=2(m+1)
?.CD=2,且為等腰直角三角形,;.CH=6
23.(2019廣西池河)如圖,五邊形ABCDE內(nèi)接于。0,CF與。。相切于點(diǎn)C,交AB延長線于點(diǎn)F.
(1)若AE=DC,ZE=ZBCD,求證:DE=BC;(2)若0B=2,AB=BD=DA,ZF=45°,求CF的長.
【答案】見解析。
【解析】(1)由圓心角、弧、弦之間的關(guān)系得而二而,由圓周角定理得出/ADE=/DBC,證明△ADE^4
DBC,即可得出結(jié)論;
證明:VAE=DC,Z.AE=DC,.*.ZADE=ZDBC,
"/ADE=/DBC
在4ADE和ADBC中,■ZE=ZBCD,
,AE二DC
.".△ADE^ADBC(AAS),;.DE=BC;
(2)連接CO并延長交AB于G,作OH,AB于H,則/0HG=/0HB=90。,由切線的性質(zhì)得出/FCG=90°,
得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG=&OH,由等邊三角形的性質(zhì)得出N0BH=30°,
由直角三角形的性質(zhì)得出OH=,OB=1,0G=V2,即可得出答案.
連接C0并延長交AB于G,作OHJ_AB于H,如圖所示:
則/0HG=N0HB=90°,
???CF與。。相切于點(diǎn)C,.?.NFCG=90°,
VZF=45°,.?.△CFG、△OGH是等腰直角三角形,;.CF=CG,OG=J^OH,
,?'AB=BD=DA,z^XABD是等邊三角形,ZABD=60°,.,?N0BH=30°,
0H=—OB=1,/.0G=^/~2,/.CF=C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 短期租房合同模板
- 電子商務(wù)協(xié)議書范文二零二五年
- 公廁結(jié)賬合同標(biāo)準(zhǔn)文本
- 二零二五版房地產(chǎn)代理銷售的合同范例
- 蓄電池爆炸事故應(yīng)急救援預(yù)案
- 設(shè)計(jì)定金協(xié)議范本
- 2025年地震數(shù)據(jù)采集系統(tǒng)合作協(xié)議書
- 人事中介合同正式合同范例
- 買樹林合同樣本
- 2024年蘇教版三年級(jí)下冊數(shù)學(xué)全冊教案及教學(xué)反思
- GB/T 13452.2-2008色漆和清漆漆膜厚度的測定
- 2023年中國工商銀行天津分行校園招聘考試錄用公告
- 班組工程量結(jié)算書
- 生產(chǎn)件批準(zhǔn)申請書
- 環(huán)境監(jiān)測考試知識(shí)點(diǎn)總結(jié)
- 爵士音樂 完整版課件
- 嘉興華雯化工 - 201604
- 冀教版七年級(jí)下冊數(shù)學(xué)課件 第8章 8.2.1 冪的乘方
- XX公司“十四五”戰(zhàn)略發(fā)展規(guī)劃及年度評(píng)價(jià)報(bào)告(模板)
- 計(jì)算機(jī)輔助設(shè)計(jì)(Protel平臺(tái))繪圖員級(jí)試卷1
- 除法口訣表(完整高清打印版)
評(píng)論
0/150
提交評(píng)論