初中數學教學設計(合集15篇)_第1頁
初中數學教學設計(合集15篇)_第2頁
初中數學教學設計(合集15篇)_第3頁
初中數學教學設計(合集15篇)_第4頁
初中數學教學設計(合集15篇)_第5頁
已閱讀5頁,還剩49頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

初中數學教學設計(合集15篇)初中數學教學設計1我在這次國培中學習了“初中數學概念課堂教學設計”。雖只有短短的時間,卻讓我受益匪淺。數學概念是數學命題、數學推理的基礎,數學學習的真正開始是從對數學概念的學習開始的,作為一名初中數學老師,我也常常在思考,如何進行概念教學?如何充分利用有限的45分鐘,讓學生真正理解概念?通過這次國培,給我們今后的數學概念教學提供了一種可以借鑒的教學模式:即“創設問題情景,歸納共同特征——建立數學模型,抽象出概念——在交流中深化概念,辨析概念的內涵與外延——鞏固、應用與拓展。”概念教學注意以下幾點:1、注重了數學與生活之間的聯系。《數學課程標準》要求:“讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程。”數學的每一個概念都是一個數學模型,老師們從學生實際出發,創設了許多有利于學生學習的現實背景與材料,極大的鼓起了學生學習數學的興趣。2、概念的得出注重了探究過程、分析過程,體現了活動主題。通過一組實例,分析共性,找共同特征。3、鋪墊導入恰當,讓預設與生成合情合理。課堂教學的優秀與否,既要看預設,又要看生成。做到了新知不新,新概念是在舊概念的基礎上滋生和發展出來的,她們這樣的引入,符合學生的最近發展區需要,教師適時搭建了一個新舊知識的橋梁,然后引導學生分析、觀察,學生就會印象深刻。4、注重了數學陷阱的設置。把學生對概念理解中的易錯點、易混淆點列出來,讓學生判斷、研究可以讓學生對概念理解更深刻。5、注重了學科間的滲透。在數學教學中,如何使學生形成數學概念,正確的理解和掌握概念是極為重要的,這是學好數學的基礎之一。要讓學生真正理解概念,要把握好以下三點:一要注重聯系生活原型,對概念作通俗解釋,體驗探究數學問題的樂趣;二要注重揭示概念的本質,準確理解概念的內涵與外延;三要注重概念的實際應用,實現知識的升華。初中數學教學設計2一教學目標1.通過案例理解正比例函數,能列出正比例函數關系式2.教會學生應用正比例函數解決生活實際問題的能力二教學重點理解正比例函數的概念三教學難點利用正比例函數解決生活實際問題四教學過程【提出問題】1.《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數圈,假設他從德州到加州行進了千米,耗費了他150天時間。(1)阿甘大約平均每天跑步多少千米?(3)阿甘一個月(30天)的行程是多少千米?【生】列算式回答【師】點評總結2.寫出下列變量間的函數表達式(1)正方形的周長l和半徑r之間的關系【進一步抽象問題讓學生思考】(2)大米每千克四元,則售價y元與數量x(kg)的函數關系式是什么?(3)下列函數關系式有什么共同點?(小組合作)【分析共同點和不同點,找出規律】(1)y=200x(2)l=2∏r(3)m=【生回答,師點評】【引入新課】1、正比例函數的概念:一般地,形如y=kx(k≠0)的函數,叫做正比例函數,其中k叫做比例系數.【板書概念,引導學生分析正比例函數的定義】2、【例題講解】例1在同一坐標系里,畫出下列函數的圖像:y==xy=3x解:【略】【掌握函數圖像的畫法:列表,描點,連線】3、練習(1)已知正比例函數y=kx.當x=3時y=6。求k的值(2)一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的?當銷售金額為360元時,則售出了多少本這種筆記本?五課外作業【反思】由于函數的概念比較抽象,學生不容易理解。而理解函數的概念是教學的重點。這節課首先通過實例,回顧函數的概念,其次抽象提出正比例函數關系式,由學生觀察得到特點,然后引出正比例函數的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數解決生活中的問題。初中數學教學設計3一、內容和內容解析平行四邊形是“空間與圖形”領域中最基本的幾何圖形,它在生活中有著十分廣泛的應用,這不僅表現在日常生活中有許多平行四邊形的圖案,還包含其性質在生產、生活各領域的實際應用。平行四邊形,是建立在前面學習了四邊形的概念和性質的基礎之上,將要學習的特殊的四邊形。本節課是平行四邊形的第一課時,主要研究平行四邊形的概念和邊、角的性質。關于平行四邊形的概念,在小學,學生已經學過,并不會感到生疏,但對于這個概念的本質屬性,理解的并不是十分深刻,所以,本節課的學習,并不是簡單的重復。本節課,平行四邊形的定義采用的是內涵定義法,即“種概念+屬差=被定義的概念”。在平行四邊形的定義中,大前提是“四邊形(種概念)”,條件是“兩組對邊分別平行(屬差)”。“兩組對邊分別平行”是平行四邊形獨有的、用以區別于一般四邊形的本質屬性,這也是平行四邊形概念的核心之所在。平行四邊形的概念,揭示了平行四邊形與四邊形的隸屬關系、區別與聯系,反映了平行四邊形的本質屬性。同時,它既是平行四邊形的判定,又可以作為平行四邊形的一個性質。關于平行四邊形邊、角的性質,“平行四邊形的對邊相等”相對于定義中的“兩組對邊分別平行”,是由位置關系向數量關系的一種延伸;“平行四邊形的對角相等”相對于“兩組對邊分別平行”,是由“相鄰的角互補”產生的思維的一種深化。同時,兩條性質的探究,經歷的是“感知、猜想、驗證、概括、證明”的認知過程;兩條性質的研究,先從邊分析,再從角分析,再到下一節課的從對角線分析,提供的是研究幾何圖形性質的一般思路;兩條性質的證明,滲透的是將四邊形問題轉化為三角形問題的一種轉化思想,而添加對角線,介紹的是將四邊形問題轉化為三角形問題的一種常用的轉化手段。在__的后續學習中,對于幾種特殊的四邊形,其定義均采用的是內涵定義法,并且矩形和菱形的定義,均以平行四邊形作為種概念,所以平行四邊形的概念作為“核心概念”當之無愧。關于平行四邊形的性質,也是后續學習矩形、菱形、正方形等知識的基礎,這些特殊平行四邊形的性質,都是在平行四邊形性質基礎上擴充的,它們的探索方法,也都與平行四邊形性質的探索方法一脈相承,因此,平行四邊形的性質,在后續的學習中,也是處于核心地位。教學重點:平行四邊形的概念和性質。二、目標和目標解析(1)教學目標:①掌握平行四邊形的概念及性質。②學會用分析法、綜合法解決問題。③體會特殊與一般的辯證關系。④逐步養成良好的個性思維品質。(2)目標解析:①使學生掌握平行四邊形的概念,掌握平行四邊形的對邊相等,對角相等的性質,會根據概念或性質進行有關的計算和證明。②通過有關的證明及應用,教給學生一些基本的數學思想方法。使學生逐步學會分別從題設或結論出發,尋求論證思路,學會用綜合法證明問題,從而提高學生分析問題解決問題的能力。③通過四邊形與平行四邊形的概念之間和性質之間的聯系與區別,使學生認識特殊與一般的辯證關系,個性與共性之間的關系等。使學生體會到事物之間總是互相聯系又相互區別的,進一步培養辯證唯物主義觀點。④通過對平行四邊形性質的探究,使學生經歷觀察、分析、猜想、驗證、歸納、概括的認知過程,培養學生良好的個性思維品質。初中數學教學設計4教學目標1.知道什么是全等形、全等三角形及全等三角形的對應元素;2.知道全等三角形的性質,能用符號正確地表示兩個三角形全等;3.能熟練找出兩個全等三角形的對應角、對應邊.教學重點全等三角形的性質.教學難點找全等三角形的對應邊、對應角.教學過程一.提出問題,創設情境1、問題:你能發現這兩個三角形有什么美妙的關系嗎?這兩個三角形是完全重合的2.學生自己動手(同桌兩名同學配合)取一張紙,將自己事先準備好的三角板按在紙上,畫下圖形,照圖形裁下來,紙樣與三角板形狀、大小完全一樣.3.獲取概念讓學生用自己的語言敘述:全等形、全等三角形、對應頂點、對應角、對應邊,以及有關的數學符號.形狀與大小都完全相同的兩個圖形就是全等形.要是把兩個圖形放在一起,能夠完全重合,就可以說明這兩個圖形的形狀、大小相同.概括全等形的準確定義:能夠完全重合的兩個圖形叫做全等形.請同學們類推得出全等三角形的概念,并理解對應頂點、對應角、對應邊的含義.仔細閱讀課本中"全等"符號表示的要求.二.導入新課將△ABC沿直線BC平移得△DEF;將△ABC沿BC翻折180°得到△DBC;將△ABC旋轉180°得△AED.議一議:各圖中的兩個三角形全等嗎?不難得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.(注意強調書寫時對應頂點字母寫在對應的位置上)啟示:一個圖形經過平移、翻折、旋轉后,位置變化了,但形狀、大小都沒有改變,所以平移、翻折、旋轉前后的圖形全等,這也是我們通過運動的方法尋求全等的一種策略.觀察與思考:尋找甲圖中兩三角形的對應元素,它們的對應邊有什么關系?對應角呢?(引導學生從全等三角形可以完全重合出發找等量關系)得到全等三角形的性質:全等三角形的對應邊相等.全等三角形的對應角相等.[例1]如圖,△OCA≌△OBD,C和B,A和D是對應頂點,說出這兩個三角形中相等的邊和角.問題:△OCA≌△OBD,說明這兩個三角形可以重合,思考通過怎樣變換可以使兩三角形重合?將△OCA翻折可以使△OCA與△OBD重合.因為C和B、A和D是對應頂點,所以C和B重合,A和D重合.∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.總結:兩個全等的三角形經過一定的轉換可以重合.一般是平移、翻轉、旋轉的方法.[例2]如圖,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的對應邊和對應角.分析:對應邊和對應角只能從兩個三角形中找,所以需將△ABE和△ACD從復雜的圖形中分離出來.根據位置元素來找:有相等元素,它們就是對應元素,然后再依據已知的對應元素找出其余的對應元素.常用方法有:(1)全等三角形對應角所對的邊是對應邊;兩個對應角所夾的邊也是對應邊.(2)全等三角形對應邊所對的角是對應角;兩條對應邊所夾的角是對應角.解:對應角為∠BAE和∠CAD.對應邊為AB與AC、AE與AD、BE與CD.[例3]已知如圖△ABC≌△ADE,試找出對應邊、對應角.(由學生討論完成)借鑒例2的方法,可以發現∠A=∠A,在兩個三角形中∠A的對邊分別是BC和DE,所以BC和DE是一組對應邊.而AB與AE顯然不重合,所以AB與AD是一組對應邊,剩下的AC與AE自然是一組對應邊了.再根據對應邊所對的角是對應角可得∠B與∠D是對應角,∠ACB與∠AED是對應角.所以說對應邊為AB與AD、AC與AE、BC與DE.對應角為∠A與∠A、∠B與∠D、∠ACB與∠AED.做法二:沿A與BC、DE交點O的連線將△ABC翻折180°后,它正好和△ADE重合.這時就可找到對應邊為:AB與AD、AC與AE、BC與DE.對應角為∠A與∠A、∠B與∠D、∠ACB與∠AED.三.課堂練習課本練習1.四.課時小結通過本節課學習,我們了解了全等的概念,發現了全等三角形的性質,并且利用性質可以找到兩個全等三角形的對應元素.這也是這節課大家要重點掌握的找對應元素的常用方法有兩種:(一)從運動角度看1.翻轉法:找到中心線,沿中心線翻折后能相互重合,從而發現對應元素.2.旋轉法:三角形繞某一點旋轉一定角度能與另一三角形重合,從而發現對應元素.3.平移法:沿某一方向推移使兩三角形重合來找對應元素.(二)根據位置元素來推理1.全等三角形對應角所對的邊是對應邊;兩個對應角所夾的邊是對應邊.2.全等三角形對應邊所對的角是對應角;兩條對應邊所夾的角是對應角.五.作業課本習題1課后作業:《新課堂》初中數學教學設計5為了提高學生的學習興趣,增大學生的學習參與面,減小差距。努力作好教學工作,在這一學期中,下文將準備了初中二年級下冊數學教學設計如下:一、教學目標:通過本期的學習,要使學生在情感與態度上,認識到數學________于實踐,又反作用于實踐,認識現實生活中圖形間的數量關系,能夠設計精美的圖案,提高學生的審美情趣,培養學生實事求是、嚴肅認真的學習態度,激發學生的學習興趣,培養學生對數學的熱愛,對生活的熱愛,在民主、和諧、合作、探究、有序、分享發現快樂,感受學習的快樂。對于過程與方法,通過學生積極參與對知識的探究,經歷發現知識,發現知識間的內在聯系,讓學生經歷發現知識道路上坎坎坷坷,達到深刻理解掌握知識的目的,達到漫江碧透,魚翔淺底的境界,在經歷這些活動中,提高學生的動手實踐能力,提高學生的邏輯推理能力與邏輯思維能力,自主探究,解決問題的能力,提高運算能力,使所有學生在數學上都有不同的發展,盡可能接近其發展的最大值,培養學生良好的學習習慣,發展學生的非智力因素,使學生潛移默化的接受辯證唯物主義的熏陶,提高學生素質。二、教材分析本學期教學內容共計五章,知識的前后聯系,教材的教學目標,重、難點分析如下:第十六章分式__的主要內容包括:分式的概念,分式的基本性質,分式的約分與通分,分式的加、減、乘、除運算,整數指數冪的概念及運算性質,分式方程的概念及可化為一元一次方程的分式方程的解法。第十七章反比例函數函數是研究現實世界變化規律的一個重要模型,本單元學生在學習了一次函數后,進一步研究反比例函數。學生在__中經歷:反比例函數概念的抽象概括過程,體會建立數學模型的思想,進一步發展學生的抽象思維能力;經歷反比例函數的圖象及其性質的探索過程,在交流中發展能力這是__的重點之一;經歷__的重點之二:利用反比例函數及圖象解決實際問題的過程,發展學生的數學應用能力;經歷函數圖象信息的識別應用過程,發展學生形象思維;能根據所給信息確定反比例函數表達式,會作反比例函數圖象,并利用它們解決簡單的實際問題。__的難點在于對學生抽象思維的培養,以及提高數形結合的意識和能力。第十八章勾股定理直角三角形是一種特殊的三角形,它有許多重要的性質,如兩個銳角互余,30度角所對的直角邊等于斜邊的一半,__所研究的勾股定理,也是直角三角形的性質,而且是一條非常重要的性質,__分為兩節,第一節介紹勾股定理及其應用,第二節介紹勾股定理的逆定理。第十九章四邊形四邊形是人們日常生活中應用較廣泛的一種圖形,尤其是平行四邊形、矩形、菱形、正方形、梯形等特殊四邊形的用處更多。因此,四邊形既是幾何中的基本圖形,也是空間與圖形領域研究的主要對象之一。__是在學生前面學段已經學過的四邊形知識、本學段學過的多邊形、平行線、三角形的有關知識的基礎上來學習的,也可以說是在已有知識的基礎上做進一步系統的整理和研究,__內容的學習也反復運用了平行線和三角形的知識。從這個角度來看,__的內容也是前面平行線和三角形等內容的應用和深化。第二十章數據的分析__主要研究平均數、中位數、眾數以及極差、方差等統計量的統計意義,學習如何利用這些統計量分析數據的集中趨勢和離散情況,并通過研究如何用樣本的平均數和方差估計總體的平均數和方差,進一步體會用樣本估計總體的思想。三、提高學科教育質量的主要措施:1、認真做好教學七認真工作。把教學七認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據新課程標準,擴充教材內容,認真上課,批改作業,認真輔導,認真制作測試試卷,也讓學生學會認真學習。2、興趣是最好的老師,愛因斯坦如是說。激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫復習提綱,使知識________于學生的構造。4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,培養學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處于一種思如泉涌的狀態。5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。6、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。7、指導成立課外興趣小組的民間組織,開展豐富多彩的課外活動,開展對奧數題的研究,課外調查,操作實踐,帶動班級學生學習數學,同時發展這一部分學生的特長。8、開展分層教學,布置作業設置A、B、C三類分層布置分別適合于差、中、好三類學生,課堂上的提問要照顧好、中、差三類學生,使他們都等到發展。9、進行個別輔導,優生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發展鋪平道路。10、站在系統的高度,使知識構筑在一個系統,上升到哲學的高度,八方聯系,渾然一體,使學生學得輕松,記得牢固。初中數學教學設計6課題:12.3等腰三角形(第一課時)教學內容:新人教版八年級上冊十二章第三節等腰三角形的第一課時任課教師:東灣中學李曉偉設計理念:教學的實質是以教材中提供的素材或實際生活中的一些問題為載體,通過一系列探究互動過程,滲透分類討論、數形結合和方程的思想方法,達到學生知識的構建、能力的培養、情感的陶冶、意識的創新。㈠教材的地位和作用分析等腰三角形是新人教版八年級上冊十二章第三節等腰三角形的第一課時的內容。本節課是在前面學習了三角形的有關概念及性質、軸對稱變換、全等三角形、垂直平分線和尺規作圖的基礎上,研究等腰三角形的定義及其重要性質,它既是前面所學知識的延伸,也是后面直角三角形、等邊三角形的知識的重要儲備,我們常常利用它證明角相等、線段相等、兩直線垂直,因此本節課具有承上啟下的重要作用。另外,本堂課通過“活動探究”、“觀察—猜想—證明”等途徑,進一步培養學生的動手能力、觀察能力、分析能力和邏輯推理能力,因此,本堂課無論在知識上,還是在對學生能力的培養及情感教育等方面都有著十分重要的作用。㈡教學內容的分析本堂課是等腰三角形的第一堂課,在認識等腰三角形的基礎上著重介紹“等腰三角形的性質”。在教學設計的過程中,通過展示我國今年舉辦的精彩絕倫的盛會—上海世博會圖片中的等腰三角形,結合云南豐富的文化資源,讓學生感知生活中處處有數學,感受圖形的和諧美、對稱美;通過學生感興趣的數學情景引入等腰三角形定義,提高學生的學習樂趣;讓學生通過動手剪等腰三角形、對折等腰三角形等活動,探究發現等腰三角形的性質,經歷知識的“再發現”過程。在探究活動的過程中發展創新思維能力,改變學生的學習方式。在發現等腰三角形的性質的基礎上,再經過推理證明等腰三角形的性質,使得推理證明成為學生觀察、實驗、探究得出結論的自然延伸,有機地將等腰三角形的認識與等腰三角形的性質的證明結合起來,從中發展學生推理能力。在例題的選取上,注重聯系實際,激發學生學習興趣,讓學生主動用數學知識解決實際問題,同時滲透分類討論、數形結合和方程的數學思想方法,讓學生形成自我的數學思維和能力,發展學生應用數學的意識。二、目標及其解析㈠教學目標:知識技能:1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形;2.經歷探究等腰三角形性質的過程,理解等腰三角形的性質的證明;3.掌握等腰三角形的性質,能運用等腰三角形的性質解決生活中簡單的實際問題。數學思考:1.經歷“觀察?實驗?猜想?論證”的過程,發展學生幾何直觀;2.經歷證明等腰三角形的性質的過程,體會證明的必要性,發展合情推理能力和初步的演繹推理能力.解決問題:1.能運用等腰三角形的性質解決生活中的實際問題,發展數學的應用能力,獲得解決問題的經驗;2.在小組活動和探究過程中,學會與人合作,體會與他人合作的重要性.情感態度:1.經歷“觀察?實驗?猜想?論證”的過程,體驗數學活動充滿著探究性和創造性,感受證明的必要性、證明過程的嚴謹性以及結論的確定性,并有克服困難和運用知識解決問題的成功體驗,建立學好數學的自信心;2.經歷運用等腰三角形解決實際問題的過程,認識數學是解決實際問題和進行交流的重要工具,了解數學對促進社會進步和發展人類理性精神的作用;3.在獨立思考的基礎上,通過小組合作,積極參與對數學問題的討論,敢于發表自己的觀點,并尊重與理解他人的見解,在交流中獲益.㈡教學重點:等腰三角形的性質及應用。㈢教學難點:等腰三角形性質的證明。㈣解析本堂課是等腰三角形的第一堂課,所以對于本堂課的知識目標的定位,主要考慮如下:1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形,在本堂課中要達到如下要求:⑴理解等腰三角形的定義,知道等腰三角形的頂角、底角、腰和底邊;⑵知道等腰三角形是軸對稱圖形,它有一條對稱軸,即:頂角角平分線(底邊上的高或底邊上的中線)所在直線;2.經歷探究等腰三角形性質的過程,掌握等腰三角形的性質的證明,在課堂中讓學生參與等腰三角形性質的探索,鼓勵學生用規范的數學言語表述證明過程,發展學生的數學語言能力和演繹推理能力,引導學生完成對等腰三角形的性質的證明;3.會利用等腰三角形的性質解決簡單的實際問題,本堂課要達到以下要求:掌握等腰三角形的性質,會利用等腰三角形的性質解決簡單的實際問題。三、問題診斷分析1.在這堂課中,學生可能遇到的第一個困難是等腰三角形性質的發現,特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質,解決這一問題教師主要借助等腰三角形對稱性的研究,并引導學生理解“重合”這個詞的涵義。2.這堂課學生可能遇到的第二個問題是證明等腰三角形的性質,這一問題主要有三個原因:第一學生剛接觸幾何證明不久,對數學語言表達方式還不熟悉;這一困難,并不是一堂課就能解決的,而要在以后學習中幫助學生增強數學語言運用的能力,能有條理地、清晰地闡述自己的觀點。在這堂課中我通過等腰三角形性質的證明,鼓勵學生運用規范的數學語言來表述,使學生數學語言能力和演繹推理能力得到提升;第二是添加輔助線的問題,這也是學生在證明中的一個難點。要解決這一問題,我借助等腰三角形是軸對稱圖形,通過研究等腰三角形的對稱軸,讓學生理解三種添加輔助線的方法,即作頂角角平分線、底邊上的高或底邊上的中線;第三是證明等腰三角形頂角角平分線、底邊上的中線、底邊上的高互相重合這一性質,要突破這一難點,我采用先證明等腰三角形兩底角相等這一性質,為學生搭一個臺階,更好地解決這個難點。3.這堂課中學生可能遇到的第三個問題是對等腰三角形的性質的應用,特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質的應用;所以我在設計課堂練習時,注重數學知識與生活實際的聯系,提高學生數學學習的興趣,讓學生主動運用數學知識解決實際問題,并通過練習滲透分類討論、數形結合和方程的數學思想方法,讓學生形成自我的數學思維和能力,發展學生應用數學的意識。四、教法、學法:教法:常言道:“教必有法,教無定法”。所以我針對八年級學生的心理特點和認知能力水平,大膽應用生活中的素材,并作了精心的安排,充分體現數學是源于實踐又運用于生活。因此,本堂課的教學中,我以學生為主體,讓學生積極思維,勇于探索,主動地獲取知識。同時,采用了現代化教學技術,激發學生的學習興趣,使整個課堂“活”起來,提高課堂效率。本堂課以生活中的一些例子為中心,讓學生親自嘗試,接受問題的挑戰,充分展示自己的觀點和見解,給學生創設一個寬松愉快的學習氛圍,讓學生體驗成功的快樂,為終身學習和發展打打下堅實的基礎。本堂課的設計是以課程標準和教材為依據,采用發現式教學。遵循因材施教的原則,堅持以學生為主體,充分發揮學生的主觀能動性。教學過程中,注重學生探究能力的培養。還課堂給學生,讓學生去親身體驗知識的產生過程,拓展學生的創造性思維。同時,注意加強對學生的啟發和引導,鼓勵培養學生大膽猜想,小心求證的科學研究的思想。學法:學生都渴望與他人交流,合作探究可使學生感受到合作的重要和團隊的精神力量,增強集體意識,所以本課采用小組合作的學習方式,讓學生遵循“情景問題?實踐探究?證明結論?解決實際問題”的主線進行學習。讓學生從活動中去觀察、探索、歸納知識,沿著知識發生,發展的脈絡,學生經過自己親身的實踐活動,形成自己的經驗,產生對結論的感知,實現對知識意義的主動構建。這不僅讓學生對所學內容留下了深刻的印象,而且能力得到培養,素質得以提高,充分地調動學生學習的熱情,讓學生學會自主學習,學會探索問題的方法。五、教學支持條件分析在本堂課中,準備利用長方形紙片、剪刀、圓規和直尺等工具,剪出等腰三角形,利用等腰三角形,通過對折、多媒體動畫演示等方法發現等腰三角形的性質,并且借助多媒體信息技術與實際動手操作加強對所學知識的理解和運用。六、教學基本流程七、教學過程設計初中數學教學設計7一、案例實施背景本節課是-學年度第一學期開學第七周筆者在長青中學的多媒體教室里上的一節公開課,課堂中數學優秀生、中等生及后進生都有,所用教材為北師大版義務教育教科書七年級數學(上冊)。二、案例主題分析與設計本節課是北師大版義務教育教科書七年級數學(上冊)——科學記數法,它是在學習乘方的基礎上,研究更簡便的記數方法,是第二章有理數及其運算的重要組成部分。《數學課程標準》強調:數學教學是數學活動的教學,是師生之間、生生之間交往互動與共同發展的過程;動手實踐,自主探索,合作交流是孩子學習數學的重要方式;合作交流的學習形式是培養孩子積極參與、自主學習的有效途徑。本節課將以“生活·數學”、“活動·思考”、“表達·應用”為主線開展課堂教學,以學生看得到、感受得到的基本素材創設問題情境,引導學生活動,并在活動中激發學生認真思考、積極探索,主動獲取數學知識,從而促進學生研究性學習方式的形成,同時通過小組內學生相互協作研究,培養學生合作性學習精神。三、案例教學目標1、知識與技能:掌握科學記數法的方法,能將一些大數寫成科學記數法。2、過程與方法:在尋找科學記數法的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程。3、情感態度與價值觀:通過科學記數法的總結,使學生形成數形結合的數學思想方法,以及知識的遷移能力、創新意識和創新精神。四、案例教學重、難點1、重點:正確運用科學記數法表示較大的數2、難點:正確掌握10的冪指數特征,將科學記數法表示的數寫成原數五、案例教學用具1、教具:多媒體平臺及多媒體課件、圖片六、案例教學過程一、創設情境,興趣導學:1、展示學生收集的非常大的數,與同學交流,你覺得記錄這些數據方便嗎?2、展示課本第63頁圖片,現實中,我們會遇到一些比較大的數,如世界人口數、地球的半徑、光速等,讀寫這樣大的數有一定的困難。師:(展示剛才演示過的3個大數)我們能不能找到更好的記數方法使下列各數更加便于讀、寫?請同學們六個人一組,分組進行討論。(1)1370000000(2)6400000(3)300000000生1:答:13.7億,640萬,3億。師:回答正確。這是數字加上單位的記數方法,在小學已經學過,是比較常用的一種方法,可是它有一定的局限性。如果我在3億后面再加上好多個0,那么這種記數方法還好用嗎?生:不好用。(讓學生意識到以前所學的方法不夠用了)師:接下來我們一起來探索新的記數方法。分析:在讀寫大數時使學生感覺到不方便,從實際生活的需要,自然引入課題,需要尋找一種更簡單的方法記數,為新課創設了良好的問題情境。二、嘗試探索,講授新課:1、探索10n的特征計算一下102、103、104、105、1010你發現什么規律?102=100103=1000104=10000105=1000001010=10000000000(觀察并思考,小組討論)(1)結果中“0”的個數與10的指數有什么關系?(2)結果的位數與10的指數有什么關系?2、練習:將下列個數寫成只有一位整數乘以10n的形式。(1)500(2)3000(4)40000師:(學生完成之后)可見這種表示方法不僅書寫簡短,同時還便于讀數。這就是我們本節課研究的內容—科學記數法。分析:通過教師引導,學生小組討論,合作探究,成功地找到表示大數的簡便記數方法——科學記數法。4、科學記數法:像上面這樣,把一個大于10的數表示成a×10n的形式(其中1≤a<10,a是整數數位只有一位的數,n是整數),這種記數方法叫做科學記數法。(思考,小組討論)10的指數與結果的位數有什么關系?分析:這是本節課的重難點:10的冪指數n與原數的整數位數之間的關系。從特殊數據出發,尋找解決問題的方案,這符合“特殊到一般”的認知規律。在探究過程中,學生的探究活動體現了“化繁為簡”、“分析歸納”的數學思想。三、鞏固新知,知識運用:1、將下列各數寫成科學記數法形式。(1)23000000(2)453000000(3)13400000000000000米,用科學記數法表示是多少米?分析:學生的模仿能力強,在分析討論10的指數與結果的位數有什么關系時,會與前面曾經討論過的10n聯系起來,也可以對知識進行遷移和回顧。再加上學生好奇心都特別強,很想將自己總結出來的結論加以應用,針對以上學生特點,給出相應的練習題。這樣學生能夠體會到學以致用的樂趣,從而調動學生自主學習的積極性。(觀察并思考,小組討論)5、如何將一個用科學記數法表示的數寫成原數?a×10n將a的小數點向右移動n位原數分析:這是本節課另一個重點,也是知識的逆向鞏固,學生通過尋找寫出原數的方法,更加明白在寫科學記數法時,如何確定10的指數,同時也學會了如何寫出原數。練習:人體內約有2.5×105個細胞,其原數為多少個?七、教學反思:數學課要注重引導學生探索與獲取知識的過程而不單注重學生對知識內容的認識,因為“過程”不僅能引導學生更好地理解知識,還能夠引導學生在活動中思考,更好地感受知識的價值,增強應用數學知識解決問題的意識;感受生活與數學的聯系,獲得“情感、態度、價值觀”方面的體驗。初中數學教學設計8一、教學目標1、知識與技能目標掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。2、能力與過程目標經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。3、情感與態度目標通過學生自己探索出法則,讓學生獲得成功的喜悅。二、教學重點、難點重點:運用有理數乘法法則正確進行計算。難點:有理數乘法法則的探索過程,符號法則及對法則的理解。三、教學過程1、創設問題情景,激發學生的求知欲望,導入新課。教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?學生:26米。教師:能寫出算式嗎?學生:……教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題2、小組探索、歸納法則(1)教師出示以下問題,學生以組為單位探索。以原點為起點,規定向東的方向為正方向,向西的方向為負方向。①2×32看作向東運動2米,×3看作向原方向運動3次。結果:向運動米2×3=②-2×3-2看作向西運動2米,×3看作向原方向運動3次。結果:向運動米-2×3=③2×(-3)2看作向東運動2米,×(-3)看作向反方向運動3次。結果:向運動米2×(-3)=④(-2)×(-3)-2看作向西運動2米,×(-3)看作向反方向運動3次。結果:向運動米(-2)×(-3)=(2)學生歸納法則①符號:在上述4個式子中,我們只看符號,有什么規律?(+)×(+)=()同號得(-)×(+)=()異號得(+)×(-)=()異號得(-)×(-)=()同號得②積的絕對值等于。③任何數與零相乘,積仍為。(3)師生共同用文字敘述有理數乘法法則。3、運用法則計算,鞏固法則。(1)教師按課本P75例1板書,要求學生述說每一步理由。(2)引導學生觀察、分析例子中兩因數的關系,得出兩個有理數互為倒數,它們的積為。(3)學生做練習,教師評析。(4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。初中數學教學設計9教育改革的關鍵在于教師觀念的轉變,現代教育理論告訴我們:教師的職責現在已經越來越少地傳授知識,而是越來越多地鼓勵、思考……將越來越成為一位顧問、一位交流意見的參加者、一位幫助發現而不是拿出現成真理的人,必須拿出更多的時間和精力去從事那些有效果的和有創造性的活動:互相影響、討論、激勵、了解、鼓舞。這說明了一個道理:教師的地位發生了根本性的變化,不再僅僅是知識的傳授者,還要確定“以人為本”的觀念,把課堂教學看作自己也是學生人生中的一段激蕩的生命經歷,鼓勵、激發學生去不斷探索,把學生的“發現”與“創造”視為最有價值的勞動成果,教師與學生平等地對話,與他們共同感悟思潮的跌宕涌動。我想從三個方面談談自己在教學時的一些認識:一、聯系生活、感知數學“數學課程不僅要考慮數學自身的特點,而且應遵循學生學習數學的心理規律,強調從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型進行解釋與應用的過程。”這就要求我們遵循學生的思維規律,在實際問題和數學模型之間架起一座橋梁,讓學生在不知不覺中走進數學、感知數學。數學________于生活并服務于生活,主體(學生)在思考問題時,既符合自身的認知規律,又有直覺洞察、直觀猜想、合理歸納與活動思維過程,有利于提高自己對數學的認識。二、身臨其境,探索規律“數學教學活動必須建立在學生的認識發展水平和已有的知識經驗上,教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會。在教學時教師應根據知識的內在結構和學生的學習規律,提供現象和問題,創設思維情境,引導學生主動參與,進行觀察、思考、探索。這樣有利于激發學生解決問題的熱情,提升學生的學習水平。比如在探究一元二次方程的根與系數的關系時,我們可以按下列步驟來創設情境。1.求三個一元二次方程的兩根之和與兩根之積。一般來說學生都是先把方程的根求出來,然后計算,學生可能體會不到什么,此時課堂氣氛比較平穩。2.求一元二次方程的兩根之和與兩根之積,這時很多學生會感到很繁,怕動手計算,課堂出現沉悶現象。此時教師立即口答出答案,學生就會感覺到很驚奇,為之一振,進而產生疑問:“老師怎么會看出答案?這里會不會有規律?”課堂出現竊竊私語,激活了學生的思維,活躍了課堂氣氛。3.提出問題:你能根據你開始的計算和老師的結論觀察出一元二次方程的根與系數之間的關系嗎?學生們躍躍欲試,開始投入到觀察、思考、探索中去。4.提出問題:你敢肯定你所猜測到的結論是正確的嗎?再一次激發學生的斗志,使他們敢于說理、敢于證明,給予他們充分展示自己才華的機會。三、由點到面,觸類旁通復習不是簡單的知識重復,而是一個再認識、再提高的過程,復習中的最大矛盾是時間短、內容多、要求高。復習既要做到突出重點、抓住典型,又能在高度概括中深刻揭示知識的內在聯系,讓學生在掌握規律中理解、記憶、熟練、提高。比如在復習一元二次方程根的判別式和根與系數的關系時,可以把一元二次方程根的判別式、根與系數的關系和二次函數的有關知識相聯系,根的判別式可以作為判別二次函數的圖像與x軸的交點個數的依據:當△>0時,拋物線與x軸有兩個不同的交點;當△<0時,拋物線與x軸沒有交點;當△=0時,拋物線與x軸只有一個交點即頂點。如果拋物線與x軸有兩個不同的交點,用根與系數的關系可以求拋物線與x軸的兩個交點之間的距離,可以判別拋物線與x軸交點的位置(交點是在坐標原點的左邊還是在坐標原點的右邊)等等。這樣在復習過程中把知識拓一拓、伸一伸,能激起學生思維的火花、學習的積極性,培養學生運用知識提高分析問題和解決問題的能力。總之,課堂教學面對的是獨立、有個性、有思維的學生,課堂教學設計應適應學生的發展,應隨“學情”的變化而變化。課堂教學設計的成效如何,完全取決于教師對教材的理解、對學生情況的了解。只有教師具備“以學生為本”的教學理念,才能一切從學生實際出發、一切為學生考慮,才能真正做到教學服務于學生,實現“不同的人在數學上得到不同的發展”。初中數學教學設計10一、內容和內容解析(一)內容概念:不等式、不等式的解、不等式的解集、解不等式以及能在數軸上表示簡單不等式的解集.(二)內容解析現實生活中存在大量的相等關系,也存在大量的不等關系.本節課從生活實際出發導入常見行程問題的不等關系,使學生充分認識到學習不等式的重要性和必然性,激發他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數形結合,用數軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.基于以上分析,可以確定本節課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數軸上.二、目標和目標解析(一)教學目標1.理解不等式的概念2.理解不等式的解與解集的意義,理解它們的區別與聯系3.了解解不等式的概念4.用數軸來表示簡單不等式的解集(二)目標解析1.達成目標1的標志是:能正確區別不等式、等式以及代數式.2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程.4、達成目標4的標志是:用數軸表示不等式的解集是數形結合的又一個重要體現,也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.三、教學問題診斷分析本節課實質是一節概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度.因此,本節課的教學難點是:理解不等式解集的意義以及在數軸上正確表示不等式的解集.四、教學支持條件分析利用多媒體直觀演示課前引入問題,激發學生的學習興趣.五、教學過程設計(一)動畫演示情景激趣多媒體演示:兩個體重相同的孩子正在蹺蹺板上做游戲,現在換了一個大人上去,蹺蹺板發生了傾斜,游戲無法繼續進行下去了,這是什么原因呢?設計意圖:通過實例創設情境,從“等”過渡到“不等”,培養學生的觀察能力,分析能力,激發他們的學習興趣.(二)立足實際引出新知問題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過a地,車速應滿足什么條件?小組討論,合作交流,然后小組反饋交流結果.最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充)1.從時間方面慮:2.從行程方面:<>503.從速度方面考慮:x>50÷設計意圖:培養學生合作、交流的意識習慣,使他們積極參與問題的討論,并敢于發表自己的見解.老師對問題解決方法的梳理與補充,發散學生思維,培養學生分析問題、解決問題的能力.(三)緊扣問題概念辨析1.不等式設問1:什么是不等式?設問2:能否舉例說明?由學生自學,老師可作適當補充.比如:是不等式.2.不等式的解設問1:什么是不等式的解?設問2:不等式的解是唯一的嗎?由學生自學再討論.老師點撥:由x>50÷得x>75說明x任意取一個大于75的數都是不等式3.不等式的解集設問1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都設問2:不等式的解集與不等式的解有什么區別與聯系?由學生自學后再小組合作交流.老師點撥:不等式的解是不等式解集中的一個元素,而不等式的解集是不等式所有解組成的一個集合.4.解不等式設問1:什么是解不等式?由學生回答.老師強調:解不等式是一個過程.設計意圖:培養學生的自學能力,進一步培養學生合作交流的意識.遵循學生的認知規律,有意識、有計劃、有條理地設計一些問題,可以讓學生始終處于積極的思維狀態,不知不覺中接受了新知識.老師再適當點撥,加深理解.(四)數形結合,深化認識問題1:由上可知,x>75既是不等式的解集.那么在數軸上如何表示x>75呢?問題2:如果在數軸上表示x≤75,又如何表示呢?由老師講解,注意規范性,準確性.老師適當補充:“≥”與“≤”的意義,并強調用“≥”或“≤”連接的式子也是不等式.比如x≤75就是不等式.設計意圖:通過數軸的直觀讓學生對不等式的解集進一步加深理解,滲透數形結合思想.(五)歸納小結,反思提高教師與學生一起回顧本節課所學主要內容,并請學生回答如下問題1、什么是不等式?<的解集,也是不等式>502、什么是不等式的解?3、什么是不等式的解集,它與不等式的解有什么區別與聯系?4、用數軸表示不等式的解集要注意哪些方面?設計意圖:歸納本節課的主要內容,交流心得,不斷積累學習經驗.(六)布置作業,課外反饋教科書第119頁第1題,第120頁第2,3題.設計意圖:通過課后作業,教師及時了解學生對本節課知識的掌握情況,以便對教學進度和方法進行適當的調整.六、目標檢測設計1.填空下列式子中屬于不等式的有___________________________①x+7>②x≥y+2=0③5x+7設計意圖:讓學生正確區分不等式、等式與代數式,進一步鞏固不等式的概念.2.用不等式表示①a與5的和小于7②a的與b的3倍的和是非負數③正方形的邊長為xcm,它的周長不超過160cm,求x滿足的條件設計意圖:培養學生審題能力,既要正確抓住題目中的關鍵詞,如“大于(小于)、非負數(正數或負數)、不超過(不低于)”等等,正確選擇不等號,又要注意實際問題中的數量的實際意義.初中數學教學設計11在初中的數學教學過程中,函數教學是比較難的章節,我們該如何設計我們的教學過程呢?下面我來談談我的一些很淺的看法:首先函數是刻畫和研究現實世界變化規律的重要模型,也是初中數學里代數領域的重要內容,它在初中數學中具有較強的綜合性。在教學中,學生常常覺得函數抽象深奧,高不可攀,老師也覺得函數難講,講了學生也理解不了,理解了也不會解題。事實果真如此難教又難學嗎?下面我談談在教學設計方面一些方法和實踐。一、注重類比教學不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認識來認識與它相似的另一事物,這種認識事物的思維方法就是類比法,利用類比的思想進行教學設計實施教學,可稱為類比教學.在函數教學中我們期望的是通過對前面知識的學習方法的傳授,達到對后續知識的學習產生影響,使學生達到舉一反三,觸類旁通的目的,讓學生順利地由學會到會學,真正實現教是為了不教的目的.有經驗的老師都會發現,初中學習的正比例函數、一次函數、反比例函數、二次函數在概念的得來、圖象性質的研究、及基本解題方法上都有著本質上的相似。因此采用類比的教學方法不但省時、省力,還有助于學生的理解和應用。是一種既經濟又實效的教學方法。下面我就舉例說明如何采用類比的方法實現函數的教學。首先是正比例函數,它是一次函數特例,也是初中數學中的一種簡單最基本的函數。但是,我們有些教師卻因為正比例函數過于簡單,而輕視。匆匆給出概念,然后應用。等到講到一次函數、反比例函數、二次函數又感到力不從心,學生接受起來概念模糊,性質混亂,解題方法不明確。造成這種困擾的原因是因為忽視正比例函數的基礎作用,我們應該借助正比例函數這個最簡單的函數載體,把函數研究經典流程完整呈現,正所謂麻雀雖小,五臟俱全。再學習其他函數時,在此基礎上類比學習,循序漸進,螺旋上升。例如:《正比例函數》教學流程(一)環節一:概念的建立通過對問題的處理用函數y=200x來反映汽車的行程與時間的對應規律引入新課。學生自覺思考教師提問,共同得出每個問題的函數關系式。引導學生觀察以上函數關系式的特點得出正比例函數的描述定義及解析式特點。(二)環節二:函數圖象這個環節是教學的重點,由學生先動手按列表——描點——連線的過程畫函數y=2x和y=-2x的圖象,相互交流比較然后教師利用多媒體展示畫函數圖象的過程并通過比較使學生正確掌握畫函數圖象的方法。(三)環節三:探究函數性質讓學生觀察函數圖象并引導學生通過比較來歸納正比例函數的性質,這個環節是本課的難點,教師要引導學生從圖象的形狀,從左往右的升降情況,經過的象限及自變量變化時函數值的變化規律。這幾個方面來歸納,最終得出正比例函數的性質。(四)環節四:概念的歸納將觀察、探究出的函數圖象的特征、函數的性質等做出系統的歸納。二、注重數形結合的教學數形結合的思想方法是初中數學中一種重要的思想方法。數學是研究現實世界數量關系和空間形式的科學。而數形結合就是通過數與形之間的對應和轉化來解決數學問題。它包含以形助數和以數解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數的嚴謹與形的直觀之長。函數的三種表示方法:解析法、列表法、圖象法本身就體現著函數的數形結合。函數圖象就是將變化抽象的函數拍照下來研究的有效工具,函數教學離不開函數圖象的研究。在借助圖象研究函數的過程中,我們需要注意以下幾點原則:(1)讓學生經歷繪制函數圖象的具體過程。首先,對于函數圖象的意義,只有學生在親身經歷了列表、描點、連線等繪制函數圖象的具體過程,才能知道函數圖象的由來,才能了解圖象上點的橫、縱坐標與自變量值、函數值的對應關系,為學生利用函數圖象數形結合研究函數性質打好基礎。其次,對于具體的一次函數、反比例函數、二次函數的圖象的認識,學生通過親身畫圖,自己發現函數圖象的形狀、變化趨勢,感悟不同函數圖象之間的關系,為發現函數圖象間的規律,探索函數的性質做好準備。(2)切莫急于呈現畫函數圖象的簡單畫法。首先,在探索具體函數形狀時,不能取得點太少,否則學生無法發現點分布的規律,從而猜想出圖象的形狀;其次,教師過早強調圖象的簡單畫法,追求方法的最優化,縮短了學生知識探索的經歷過程。所以,在教新知識時,教師要允許學生從最簡單甚至最笨拙的方法做起,漸漸過渡到最佳方法的掌握,達到認識上的最佳狀態。(3)注意讓學生體會研究具體函數圖象規律的方法。初中階段一般采用兩種方法研究函數圖象:一是有特殊到一般的歸納法,二是控制參數法。函數是一個整體,各個具體函數是函數的特例,研究方法應是相同的,通過類比和數形結合的方法,對比性質的差異性,將具體函數逐步納入到整個函數學習中去,這也符合教材設計的螺旋式上升的理念。這樣自然使二次函數變得難著不難,水到渠成。關于待定系數法,首先要讓學生理解感受到待定系數法的本質:對于某些數學問題,如果已知所求結果具有某種確定的形式,則可引進一些尚待確定的系數來表示這種結果,通過已知條件建立起給定的算式和結果之間的恒等式,得到以待定系數為元的方程或方程組,解之即得待定的系數。待定系數法在確定各種函數解析式中有著重要的作用,不論是正、反比例函數,還是一次函數、二次函數,確定函數解析式時都離不開待定系數法。因此我們要重視簡單的正比例函數、一次函數的待定系數法的應用。要在簡單的函數中講出待定系數法的本質來,等到了反比例函數和二次函數及綜合情況,學生已能形成能力,自如使用此方法,這時就是技巧的點撥。初中數學教學設計12教材與學情:解直角三角形的應用是在學生熟練掌握了直角三角形的解法的基礎上進行教學,它是把一些實際問題轉化為解直角三角形的數學問題,對分析問題能力要求較高,這會使學生學習感到困難,在教學中應引起足夠的重視。信息論原理:將直角三角形中邊角關系作為已有信息,通過復習(輸入),使學生更牢固地掌握(貯存);再通過例題講解,達到信息處理;通過總結歸納,使信息優化;通過變式練習,使信息強化并能靈活運用;通過布置作業,使信息得到反饋。教學目標:⒈認知目標:⑴懂得常見名詞(如仰角、俯角)的意義⑵能正確理解題意,將實際問題轉化為數學⑶能利用已有知識,通過直接解三角形或列方程的方法解決一些實際問題。⒉能力目標:培養學生分析問題和解決問題的能力,培養學生思維能力的靈活性。⒊情感目標:使學生能理論聯系實際,培養學生的對立統一的觀點。教學重點、難點:重點:利用解直角三角形來解決一些實際問題難點:正確理解題意,將實際問題轉化為數學問題。信息優化策略:⑴在學生對實際問題的探究中,神經興奮,思維活動始終處于積極狀態⑵在歸納、變換中激發學生思維的靈活性、敏捷性和創造性。⑶重視學法指導,以加速教學效績信息的順利體現。教學媒體:投影儀、教具(一個銳角三角形,可變換圖2-圖7)高潮設計:1、例1、例2圖形基本相同,但解法不同;這是為什么?學生的思維處于積極探求狀態中,從而激發學生學習的積極性和主動性2、將一個銳角三角形紙片通過旋轉、翻折等變換,使學生對問題本質有了更深的認識教學過程:一、復習引入,輸入并貯存信息:1.提問:如圖,在Rt△ABC中,∠C=90°。⑴三邊a、b、c有什么關系?⑵兩銳角∠A、∠B有怎樣的關系?⑶邊與角之間有怎樣的關系?2.提問:解直角三角形應具備怎樣的條件:注:直角三角形的邊角關系及解直角三角形的條件由投影給出,便于學生貯存信息二、實例講解,處理信息:例1.(投影)在水平線上一點C,測得同頂的仰角為30°,向山沿直線前進20為到D處,再測山頂A的仰角為60°,求山高AB。⑴引導學生將實際問題轉化為數學問題。⑵分析:求AB可以解Rt△ABD和Rt△ABC,但兩三角形中都不具備直接條件,但由于∠ADB=2∠C,很容易發現AD=CD=20米,故可以解Rt△ABD,求得AB。⑶解題過程,學生練習。⑷思考:假如∠ADB=45°,能否直接來解一個三角形呢?請看例2。例2.(投影)在水平線上一點C,測得山頂A的仰角為30°,向山沿直線前進20米到D處,再測山頂A的仰角為45°,求山高AB。分析:⑴在Rt△ABC和Rt△ABD中,都沒有兩個已知元素,故不能直接解一個三角形來求出AB。⑵考慮到AB是兩直角三角形的直角邊,而CD是兩直角三角形的直角邊,而CD均不是兩個直角三角形的直角邊,但CD=BC=BD,啟以學生設AB=X,通過列方程來解,然后板書解題過程。解:設山高AB=x米在Rt△ADB中,∠B=90°∠ADB=45°∵BD=AB=x(米)在Rt△ABC中,tgC=AB/BC∴BC=AB/tgC=√3(米)∵CD=BC-BD∴√3x-x=20解得x=(10√3+10)米答:山高AB是(10√3+10)米三、歸納總結,優化信息例2的圖開完全一樣,如圖,均已知∠1、∠2及CD,例1中∠2=2∠1求AB,則需解Rt△ABD例2中∠2≠2∠1求AB,則利用CD=BC-BD,列方程來解。四、變式訓練,強化信息(投影)練習1:如圖,山上有鐵塔CD為m米,從地上一點測得塔頂C的仰角為∝,塔底D的仰角為β,求山高BD。練習2:如圖,海岸上有A、B兩點相距120米,由A、B兩點觀測海上一保輪船C,得∠CAB=60°∠CBA=75°,求輪船C到海岸AB的距離。練習3:在塔PQ的正西方向A點測得頂端P的仰角為30°,在塔的正南方向B點處,測得頂端P的仰角為45°且AB=60米,求塔高PQ。教師待學生解題完畢后,進行講評,并利用教具揭示各題實質:⑴將基本圖形4旋轉90°,即得圖5;將基本圖形4中的Rt△ABD翻折180°,即可得圖6;將基本圖形4中Rt△ABD繞AB旋轉90°,即可得圖7的立體圖形。⑵引導學生歸納三個練習題的等量關系:練習1的等量關系是AB=AB;練習2的等量關系是AD+BD=AB;練習3的等量關系是AQ2+BQ2=AB2五、作業布置,反饋信息《幾何》第三冊P57第10題,P58第4題。板書設計:解直角三角形的應用例1已知:………例2已知:………小結:………求:………求:………解:………解:………練習1已知:………練習2已知:………練習3已知:………求:………求:………求:………解:………解:………解:………初中數學教學設計13摘要:本著對課堂練習分層教學設計的要求與目的,本節課設計了三個層次。針對學困生的特殊情況,課堂練習通過誦讀定理和抄寫例題來使其加深印象;在鞏固練習中中等生要求書面寫出步驟并進行展示;對于優等生在快結束本節課時拋出變式讓他們進行思考,并交流思路。這三個層次都貫穿于整個課堂教學,使每位學生上課都有事可做,根據自己的能力來解決能力范圍內的問題。關鍵詞:相切;環節說明;分層體現;一、案例背景介紹(一)教學環境在我們著手進行課題《初中數學分層教學方式與策略研究》的研究開始后,大家齊心協力探索、研究方法,組內各種分層招數可謂是百花齊放,為此我代表課題組上了一節分層教學的展示課,以供同仁觀摩點評,為促進數學教學的分層設計向更好的方向前行作貢獻。(二)學生情況我校學生大部分來自韓莊鎮不同的自然村,由于小學地域的不同,所以學生的基礎各不相同,很多學生的基礎還相當薄弱。因此這種情況特別適合分層教學。(三)教材情況本課是人教版初三數學上冊第24章圓第2節點和圓、直線和圓的位置關系中的一個課時:直線和圓相切的情況。學生已經有了點和圓的位置關系的基礎以及直線和圓的位置關系的數量的認識,本節課研究直線與圓的特殊位置關系相切,將相切從位置到數量的邏輯自然過渡,進而引出圓的切線的判定和性質。重點是圓的切線的判定定理和性質定理。難點是判定定理的理解和性質定理證明中反證法的理解。二、案例內容設計及說明環節一:復習引入通過回顧舊知再次加深圓與直線的位置關系,在全班集體朗讀中體會d與r的關系,并順勢將位置關系量化這一問題顯化,同時自然引出特殊情況――相切環節說明:俗話說書讀百遍,其意自現。數學概念在朗讀中更能逐漸理解其本質,因此不光語文需要朗讀,數學也要朗讀。而且針對我班學困生上課聽不懂,不會做的現象,這樣來設計復習方式更能調動我班學生學習的動力,讓每位學生都參與到課堂教學中來。這也是這個環節分層的體現。環節二:新知探究活動1、引導學生從直線與圓相切的位置及數量關系上來深入探究,通過動態演示來理解一條直線何時變成圓的切線。環節說明:上節課得到的圓與直線相切是數量上的關系,通過動態的演示讓學生明確位置的變化,從而總結出切線的判定。但是引導很重要,從兩個方面去觀察:直線經過哪里?與圓的半徑有什么位置關系?需要老師點撥。并要等待學生來總結,不能操之過急。分層體現1對觀察的結果分別讓兩位程度較差的學生回答,再讓中等程度的學生來總結;體現2對定理的數學表達讓全體學生寫在練習本上,老師選擇展示,并修改;體現3對總結出的判定進行朗讀。活動2、將判定的題設和結論互換后的探究。環節說明:反證法在過三點做圓時已有所涉及,所以在這里用反證法證明切線的性質時讓學生互相交流討論然后進行匯報就行,不要進行過多的引申,否則淡化了主題。分層體現1討論交流時采取師傅和徒弟在同一組,師傅負責解釋證明的方法;體現2數學語言的書寫讓學生自己寫并派代表寫在黑板上。環節三:鞏固和應用通過判斷題加深對切線的判定和性質的理解。通過師生共同分析解決幾何解答證明題,并由學生書寫證明步驟。環節說明:判斷題中設置了3道小題,并給出了反例,能使學生更加明確定理的意義。這里教學的分層體現在針對反例來問學困生為什么不對,讓學生說出違背了所需條件的哪一條,強化切線判定條件在這部分學生頭腦中的印象。例題的分析采取了小組討論交流的方法,與環節二中的分組一樣,分層體現在“師帶徒”弄清解題思路,師傅增強了解題的邏輯性,更嚴密,徒弟學會了解題的分析,拓寬了視野,打開了思路。在有思路的前提下,全班安靜書寫步驟。還可以展示在投影下,由學生來評判書寫的是否清楚。環節四:課堂小結在小結中,除了總結出本節課所學的判定和性質外,將相關的判定和性質做一歸納很有必要,“在不斷的總結中收獲、進步”不是嗎?同時提出下節課要學習的相關性質更能激起學生學習的積極性。環節說明:在小結的分層中判定由程度稍差點的學生總結,哪怕照著書上找都行,并進行誦讀,使其再次熟知所學知識。在性質的總結中,老師拋出兩條本節未涉及的性質給學生,讓學生課后思考證明,在下節課時可由學生簡要發表見解并證明。環節五:拓展練習通過引導學生添加輔助線,點撥學生圓中常用輔助線的做法,分情況添加恰當的輔助線。這兩個練習旨在拓展尖子生的思維。環節六:作業布置通過分層布置,使每位學生都能在自己能力范圍內進行鞏固練習。環節說明:作業1、重點面向學困生考察其掌握基礎的程度。作業2、針對待優生夯實基礎的基礎上,提高其運用能力。作業3、是設計的培優計劃,對學有余力的學生來說是個很好的鍛煉機會。三、案例分析與反思實際上本節課中圓的切線的判定定理是為了便于應用而對直線和圓相切的定義改寫得到的一種形式,而圓的切線的性質定理的證明僅僅要求學生再次感受反證法,并不要求會應用,所以本節的設計在分層中很注重理解和感知,通過互幫互助和朗讀感知達到難點的突破,另外圓是學生學習的第一個曲線形,由直線形到曲線形,在知識上是一個飛躍,本節利用圖形運動變化過程發現其中圖形的性質,做好了知識前后的銜接,同時加強了新舊知識的聯系,發揮出了知識的遷移作用。類比也是本節課所用到的一個重要的學習方法,而且在教授過程中難度的控制非常適當,分層的影子處處可見。縱觀整節課的分層之處進入都很自然,也落到了實處,但分層效果的檢測沒有體現出來,這也是遺憾之處。初中數學教學設計14★目標預設一、知識與能力借助生活中的實例會判斷一個數是正數還是負數,能用正負數表示具有相反意義的量二、過程與方法1、過程:通過實例引入負數,從而指導學生會識別正負數及其表示法,能應用正負數表示具有相反意義的量。2、方法:討論法、探究法、講授法、觀察法。三、情感、態度、價值觀樂于接觸社會環境中的數學信息,愿意談論數學話題,在數學活動中發揮積極作用★教學重難點一、重點:理解正數和負數的概念,判斷一個數是正數還是負數,應用正負數表示具有相反意義的量二、難點:負數的意義,理解具有相反意義的量。★教學準備帶有負數的實例若干★預習導學在生活、生產、科研中,經常遇到數的表示與數的運算的問題。例如,⑴天氣預報11月某天北京的溫度為-3~3℃,它的確切含義是什么?這一天北京的溫差是多少?⑵有三個隊參加的足球比賽中,紅隊勝黃隊(4∶1),黃隊勝藍隊(1∶0),藍隊勝紅隊(1∶0),如何確定三個隊的凈勝球數與排名順序?⑶某機器零件的長度設計為100mm,加工圖紙標注的尺寸為100±0.5(mm),這里的±0.5代表什么意思?合格產品的長度范圍是多少?(問題1-3友情提示、全班交流、教師點評)★教學過程一、創設情景,談話引入在小學里我們已經學過哪些類型的數(自然數和分數),它們都是由實際需要而產生的,由記數、排序產生數1,2,3……,由表示“沒有”“空位”,產生數0,由分物、測量產生分數,,……,但在預習導學中表示溫度、凈勝球數、加工允許誤差時用到數-3,3,2,-2,0,+0.5,-0.5。二、精講點撥,質疑問難這里出現了一種新數:-3,-2,-0.5。在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,小于設計尺寸0.5mm,像-3,-2,-0.5這樣的數(即在以前學過的0以外的數前面加上負號“-”的數)叫做負數。而3,2,+0.5在問題中分別表示零上3攝氏度,凈勝2球,大于設計尺寸0.5mm,它們與負數具有相反的意義。我們把這樣的數(即以前學過的0以外的數)叫做正數數字前的“+”,“-”分別讀“正”,“負”。正數前的“+”可加也可省略。數0既不是正數,也不是負數。把0以外的數分成正數和負數,表示具有相反意義的量。三、課堂活動,強化訓練小組討論:生活中你們見過帶“-”的數嗎?(代表發言,教師適當表揚學生)例1:下面哪些數是正數,哪些是負數。(學生獨立思考,個別回答,教師點評)-11,4.8,+73,-2.7,,-,-8.12,100例2:在知識競賽中,如果用+10分表示加10分,那么扣20分怎樣表示?(個別回答,學生點評)練習:見書本P5練習(學生獨立完成,教師巡視,個別指導)四、延伸拓展,鞏固內化例3:(1)一個月內,小明體重增加2千克,小華體重減少一千克,小強體重沒變化,寫出他們這個月的體重增長值(減少值呢)?(小組討論,代表發言,教師點評)(2)下列國家的商品進出口總額比上年的變化情況是:美國減少6.4%,德國增長1.3%法國減少2.4%,英國減少3.5%意大利增長0.2%,中國增長7.5%寫出這些國家商品進出口總額的增長率。(學生獨立思考,教師點評)(3)一潛水艇所在高度為-50米,一條鯊魚在潛水艇上方10米處,鯊魚所在的高度是多少?(4)向北走-20米所表示的意思是什么?(5)某銀行職員在一天內經辦了五筆業務:取出10000元,存進25000元,取出5000元,存進8000元。求該職員在一天內使銀行變化了多少元?(6)在一次數學競賽中,成績在120分以上為優秀120分到119分為合格,100分以下的不合格。老師將他班上的十位競賽成績簡記為:-10、-5、0、-28、+10、20、-3、+15、+8、-23,則這十位同學中優秀的有幾名?(7)判斷下列各題:①正數就是自然數②既不是正數也不是負數的數不存在③帶正號的數為正數帶負號的數為負數④零是最小的整數⑤-a是負數練習:見書本P6(獨立完成,教師巡視,適時指導,得出結論)五、布置作業,當堂反饋見書本P7《當堂反饋》初中數學教學設計15一、內容簡介本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。關鍵信息:1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的.結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。二、學習者分析:1、在學習本課之前應具備的基本知識和技能:①同類項的定義。②合并同類項法則③多項式乘以多項式法則。2、學習者對即將學習的內容已經具備的水平:在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。三、教學/學習目標及其對應的課程標準:(一)教學目標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論