




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省贛州市五校協作體2024年高考考前提分數學仿真卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.2.已知,若對任意,關于x的不等式(e為自然對數的底數)至少有2個正整數解,則實數a的取值范圍是()A. B. C. D.3.已知集合,,則()A. B. C. D.4.《算數書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現存最早的有系統的數學典籍.其中記載有求“囷蓋”的術:“置如其周,令相承也.又以高乘之,三十六成一”.該術相當于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當于將圓錐體積公式中的圓周率近似取為()A. B. C. D.5.已知數列是公差為的等差數列,且成等比數列,則()A.4 B.3 C.2 D.16.函數y=sin2x的圖象可能是A. B.C. D.7.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()8.已知數列滿足,則()A. B. C. D.9.設復數滿足,在復平面內對應的點為,則()A. B. C. D.10.已知角的終邊經過點P(),則sin()=A. B. C. D.11.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.12.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,.若,則實數a的值是______.14.已知橢圓Г:,F1、F2是橢圓Г的左、右焦點,A為橢圓Г的上頂點,延長AF2交橢圓Г于點B,若為等腰三角形,則橢圓Г的離心率為___________.15.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調查,將結果列成頻率分布表如下:壽命(天)頻數頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結果相同,則的最小值為______.16.的展開式中的系數為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)解不等式;(Ⅱ)設其中為常數.若方程在上恰有兩個不相等的實數根,求實數的取值范圍.18.(12分)已知,,為正數,且,證明:(1);(2).19.(12分)設橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由.20.(12分)數列滿足,,其前n項和為,數列的前n項積為.(1)求和數列的通項公式;(2)設,求的前n項和,并證明:對任意的正整數m、k,均有.21.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.22.(10分)語音交互是人工智能的方向之一,現在市場上流行多種可實現語音交互的智能音箱.主要代表有小米公司的“小愛同學”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經銷商為了了解不同智能音箱與其購買者性別之間的關聯程度,從某地區隨機抽取了100名購買“小愛同學”和100名購買“天貓精靈”的人,具體數據如下:“小愛同學”智能音箱“天貓精靈”智能音箱合計男4560105女554095合計100100200(1)若該地區共有13000人購買了“小愛同學”,有12000人購買了“天貓精靈”,試估計該地區購買“小愛同學”的女性比購買“天貓精靈”的女性多多少人?(2)根據列聯表,能否有95%的把握認為購買“小愛同學”、“天貓精靈”與性別有關?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.2、B【解析】
構造函數(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數解,構造函數,,通過導數研究單調性,由可知,要使得至少有2個正整數解,只需即可,代入可求得結果.【詳解】構造函數(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數在判斷函數單調性中的應用,考查不等式成立問題中求解參數問題,考查學生分析問題的能力和邏輯推理能力,難度較難.3、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.4、C【解析】
將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數學問題考查圓錐體積計算的實際應用,考查學生的運算求解能力、創新能力.5、A【解析】
根據等差數列和等比數列公式直接計算得到答案.【詳解】由成等比數列得,即,已知,解得.故選:.【點睛】本題考查了等差數列,等比數列的基本量的計算,意在考查學生的計算能力.6、D【解析】分析:先研究函數的奇偶性,再研究函數在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數,排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數圖象的識別問題的常見題型及解題思路:(1)由函數的定義域,判斷圖象的左、右位置,由函數的值域,判斷圖象的上、下位置;(2)由函數的單調性,判斷圖象的變化趨勢;(3)由函數的奇偶性,判斷圖象的對稱性;(4)由函數的周期性,判斷圖象的循環往復.7、D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.8、C【解析】
利用的前項和求出數列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.9、B【解析】
設,根據復數的幾何意義得到、的關系式,即可得解;【詳解】解:設∵,∴,解得.故選:B【點睛】本題考查復數的幾何意義的應用,屬于基礎題.10、A【解析】
由題意可得三角函數的定義可知:,,則:本題選擇A選項.11、B【解析】
由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.12、D【解析】
以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數量積的運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】
根據集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9【點睛】本題考查集合的交集,是基礎題.14、【解析】
由題意可得等腰三角形的兩條相等的邊,設,由題可得的長,在三角形中,三角形中由余弦定理可得的值相等,可得的關系,從而求出橢圓的離心率【詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結合余弦定理,易得在中,,所以,即e==,故答案為:.【點睛】此題考查橢圓的定義及余弦定理的簡單應用,屬于中檔題.15、10【解析】
先求出a,b,根據分層抽樣的比例引入正整數k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應用,涉及抽樣比、總體數量、每層樣本數量的計算,屬于基礎題.16、28【解析】
將已知式轉化為,則的展開式中的系數中的系數,根據二項式展開式可求得其值.【詳解】,所以的展開式中的系數就是中的系數,而中的系數為,展開式中的系數為故答案為:28.【點睛】本題考查二項式展開式中的某特定項的系數,關鍵在于將原表達式化簡將三項的冪的形式轉化為可求的二項式的形式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數根.當時,易知當,方程在上有且只有一個實數根.此時方程在上也有一個實數根.滿足條件.綜上,實數的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數求參數范圍,考查學生的運算能力,是一道中檔題.18、(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.19、(1)(2)【解析】試題分析:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以解得所以橢圓E的方程為(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關系,圓與橢圓的位置關系.點評:中檔題,涉及直線與圓錐曲線的位置關系問題,往往要利用韋達定理.存在性問題,往往從假設存在出發,運用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達定理,應用平面向量知識證明了圓的存在性.20、(1),;(2),證明見解析【解析】
(1)利用已知條件建立等量關系求出數列的通項公式.(2)利用裂項相消法求出數列的和,進一步利用放縮法求出結論.【詳解】(1),,得是公比為的等比數列,,,當時,數列的前項積為,則,兩式相除得,得,又得,;(2),故.【點睛】本題考查的知識要點:數列的通項公式的求法及應用,數列的前項和的應用,裂項相消法在數列求和中的應用,主要考查學生的運算能力和轉換能力,屬于中檔題.21、(1)證明見解析;(2)證明見解析;(3)不能為.【解析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 面向服務的軟件設計架構圖解與試題答案
- 機電工程2025年培訓與發展試題及答案
- 機電工程人員溝通試題及答案
- 安全法知識測試題及答案
- 培養創新能力的2025年軟件設計師試題及答案
- 西方政治基礎知識考察試題及答案
- 高效復習2025年網絡工程師經典試題及答案
- 建筑設備復習測試卷
- 核心知識點的軟件設計師復習策略試題及答案
- 英語四年級英試卷及答案
- 高標準農田施工安全教育
- 自然療法研究與培訓中心行業深度調研及發展戰略咨詢報告
- 2025年砂石常規檢測試題及答案
- 機械設計制造及其自動化畢業論文-溫室用小型電動旋拼機設計
- 2025人教版七年級下冊生物期末學業質量檢測試卷(含答案)
- 教師職業道德與專業發展知到智慧樹章節測試課后答案2024年秋魯東大學
- 品質管理品質部管理制度
- 非標機械設備工廠項目績效獎激勵方案2023年
- 養老護理員職業道德及行為規范
- 貴州省遵義市(2024年-2025年小學六年級語文)部編版質量測試((上下)學期)試卷及答案
- 《綠色建筑咨詢服務》課件
評論
0/150
提交評論