湖州市吳興區2024年中考五模數學試題含解析_第1頁
湖州市吳興區2024年中考五模數學試題含解析_第2頁
湖州市吳興區2024年中考五模數學試題含解析_第3頁
湖州市吳興區2024年中考五模數學試題含解析_第4頁
湖州市吳興區2024年中考五模數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖州市吳興區2024年中考五模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.一組數據8,3,8,6,7,8,7的眾數和中位數分別是()A.8,6B.7,6C.7,8D.8,72.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對折后,點A恰好落在BC上的點D處,點CE=1,AC=4,則下列結論一定正確的個數是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE與△BDF的周長相等.A.1個 B.2個 C.3個 D.4個3.在平面直角坐標系中,點A的坐標是(﹣1,0),點B的坐標是(3,0),在y軸的正半軸上取一點C,使A、B、C三點確定一個圓,且使AB為圓的直徑,則點C的坐標是()A.(0,) B.(,0) C.(0,2) D.(2,0)4.李老師在編寫下面這個題目的答案時,不小心打亂了解答過程的順序,你能幫他調整過來嗎?證明步驟正確的順序是已知:如圖,在中,點D,E,F分別在邊AB,AC,BC上,且,,求證:∽.證明:又,,,,∽.A. B. C. D.5.如圖的幾何體是由五個小正方體組合而成的,則這個幾何體的左視圖是()A. B.C. D.6.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.7.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.48.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.39.下列命題正確的是()A.對角線相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形D.對角線互相垂直且相等的四邊形是正方形10.如圖,在平面直角坐標系中,△OAB的頂點A在x軸正半軸上,OC是△OAB的中線,點B、C在反比例函數y=(x>0)的圖象上,則△OAB的面積等于()A.2 B.3 C.4 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.計算的結果為.12.(2017四川省攀枝花市)若關于x的分式方程無解,則實數m=_______.13.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設Q、R分別是AB、AD上的動點,則△CQR的周長的最小值為_________.14.若2a﹣b=5,a﹣2b=4,則a﹣b的值為________.15.如圖,小軍、小珠之間的距離為2.7m,他們在同一盞路燈下的影長分別為1.8m,1.5m,已知小軍、小珠的身高分別為1.8m,1.5m,則路燈的高為____m.16.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.三、解答題(共8題,共72分)17.(8分)某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統計如下:命中環數678910甲命中相應環數的次數01310乙命中相應環數的次數20021(1)根據上述信息可知:甲命中環數的中位數是_____環,乙命中環數的眾數是______環;

(2)試通過計算說明甲、乙兩人的成績誰比較穩定?

(3)如果乙再射擊1次,命中8環,那么乙射擊成績的方差會變小.(填“變大”、“變小”或“不變”)18.(8分)已知:如圖所示,拋物線y=﹣x2+bx+c與x軸的兩個交點分別為A(1,0),B(3,0)(1)求拋物線的表達式;(2)設點P在該拋物線上滑動,且滿足條件S△PAB=1的點P有幾個?并求出所有點P的坐標.19.(8分)甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數關系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數關系.請根據圖象解答下列問題:當轎車剛到乙地時,此時貨車距離乙地千米;當轎車與貨車相遇時,求此時x的值;在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.20.(8分)問題:將菱形的面積五等分.小紅發現只要將菱形周長五等分,再將各分點與菱形的對角線交點連接即可解決問題.如圖,點O是菱形ABCD的對角線交點,AB=5,下面是小紅將菱形ABCD面積五等分的操作與證明思路,請補充完整.(1)在AB邊上取點E,使AE=4,連接OA,OE;(2)在BC邊上取點F,使BF=______,連接OF;(3)在CD邊上取點G,使CG=______,連接OG;(4)在DA邊上取點H,使DH=______,連接OH.由于AE=______+______=______+______=______+______=______.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.21.(8分)(2016山東省煙臺市)由于霧霾天氣頻發,市場上防護口罩出現熱銷,某醫藥公司每月固定生產甲、乙兩種型號的防霧霾口罩共20萬只,且所有產品當月全部售出,原料成本、銷售單價及工人生產提成如表:(1)若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產品分別是多少萬只?(2)公司實行計件工資制,即工人每生產一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產提成總額)不超過239萬元,應怎樣安排甲、乙兩種型號的產量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)22.(10分)如圖,在△ABC中,AB=AC,點,在邊上,.求證:.23.(12分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.24.“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調查了某單位員工上下班的交通方式,繪制了兩幅統計圖:(1)樣本中的總人數為人;扇形統計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數不低于開私家車的人數?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:根據中位數和眾數的定義分別進行解答即可.把這組數據從小到大排列:3,6,7,7,8,8,8,8出現了3次,出現的次數最多,則眾數是8;最中間的數是7,則這組數據的中位數是7考點:(1)眾數;(2)中位數.2、D【解析】等腰直角三角形紙片ABC中,∠C=90°,∴∠A=∠B=45°,由折疊可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正確;由折疊可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正確;∵BC=4,CD=4,∴BC=CD,故③正確;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周長=1+3+2=4+2,由折疊可得,DF=AF,∴△BDF的周長=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE與△BDF的周長相等,故④正確;故選D.點睛:本題主要考查了折疊問題,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.3、A【解析】

直接根據△AOC∽△COB得出OC2=OA?OB,即可求出OC的長,即可得出C點坐標.【詳解】如圖,連結AC,CB.

依△AOC∽△COB的結論可得:OC2=OAOB,即OC2=1×3=3,解得:OC=或?(負數舍去),故C點的坐標為(0,).故答案選:A.【點睛】本題考查了坐標與圖形性質,解題的關鍵是熟練的掌握坐標與圖形的性質.4、B【解析】

根據平行線的性質可得到兩組對應角相等,易得解題步驟;【詳解】證明:,,又,,∽.故選B.【點睛】本題考查了相似三角形的判定與性質;關鍵是證明三角形相似.5、D【解析】

找到從左面看到的圖形即可.【詳解】從左面上看是D項的圖形.故選D.【點睛】本題考查三視圖的知識,左視圖是從物體左面看到的視圖.6、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.7、B【解析】

此題可根據反比例函數圖象的對稱性得到A、B兩點關于原點對稱,再由S△ABM=1S△AOM并結合反比例函數系數k的幾何意義得到k的值.【詳解】根據雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經常考查的一個知識點.8、B【解析】∵四邊形AECD是平行四邊形,

∴AE=CD,

∵AB=BE=CD=3,

∴AB=BE=AE,

∴△ABE是等邊三角形,

∴∠B=60°,∴的弧長=.故選B.9、C【解析】分析:根據平行四邊形、矩形、菱形、正方形的判定定理判斷即可.詳解:對角線互相平分的四邊形是平行四邊形,A錯誤;對角線相等的平行四邊形是矩形,B錯誤;對角線互相垂直的平行四邊形是菱形,C正確;對角線互相垂直且相等的平行四邊形是正方形;故選:C.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.10、B【解析】

作BD⊥x軸于D,CE⊥x軸于E,∴BD∥CE,∴,∵OC是△OAB的中線,∴,設CE=x,則BD=2x,∴C的橫坐標為,B的橫坐標為,∴OD=,OE=,∴DE=OE-OD=﹣=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA?BD=×=1.故選B.點睛:本題是反比例函數與幾何的綜合題,熟知反比例函數的圖象上點的特征和相似三角形的判定和性質是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

直接把分子相加減即可.【詳解】=,故答案為:.【點睛】本題考查了分式的加減法,關鍵是要注意通分及約分的靈活應用.12、3或1.【解析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①當整式方程無解時,m﹣3=0,m=3;②當整式方程的解為分式方程的增根時,x=1,∴m﹣3=2,m=1.綜上所述:∴m的值為3或1.故答案為3或1.13、【解析】

作C關于AB的對稱點G,關于AD的對稱點F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關于AB的對稱點G,關于AD的對稱點F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.【點睛】本題考查了軸對稱問題,關鍵是根據軸對稱的性質和兩點之間線段最短解答.14、1.【解析】試題分析:把這兩個方程相加可得1a-1b=9,兩邊同時除以1可得a-b=1.考點:整體思想.15、3【解析】試題分析:如圖,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,解得:AB=3m,答:路燈的高為3m.考點:中心投影.16、4cm.【解析】

由題意知OD⊥AB,交AB于點C,由垂徑定理可得出BC的長,在Rt△OBC中,根據勾股定理求出OC的長,由CD=OD-OC即可得出結論.【詳解】由題意知OD⊥AB,交AB于點E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.【點睛】本題考查的是垂徑定理的應用,根據題意在直角三角形運用勾股定理列出方程是解答此題的關鍵.三、解答題(共8題,共72分)17、(1)8,6和9;(2)甲的成績比較穩定;(3)變小【解析】

(1)根據眾數、中位數的定義求解即可;

(2)根據平均數的定義先求出甲和乙的平均數,再根據方差公式求出甲和乙的方差,然后進行比較,即可得出答案;

(3)根據方差公式進行求解即可.【詳解】解:(1)把甲命中環數從小到大排列為7,8,8,8,9,最中間的數是8,則中位數是8;

在乙命中環數中,6和9都出現了2次,出現的次數最多,則乙命中環數的眾數是6和9;

故答案為8,6和9;

(2)甲的平均數是:(7+8+8+8+9)÷5=8,

則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,

乙的平均數是:(6+6+9+9+10)÷5=8,

則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,

所以甲的成績比較穩定;

(3)如果乙再射擊1次,命中8環,那么乙的射擊成績的方差變小.

故答案為變小.【點睛】本題考查了方差:一組數據中各數據與它們的平均數的差的平方的平均數,叫做這組數據的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好.也考查了算術平均數、中位數和眾數.18、(1)y=﹣x2+4x﹣3;(2)滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解析】

(1)由于已知拋物線與x軸的交點坐標,則可利用交點式求出拋物線解析式;(2)根據二次函數圖象上點的坐標特征,可設P(t,-t2+4t-3),根據三角形面積公式得到?2?|-t2+4t-3|=1,然后去絕對值得到兩個一元二次方程,再解方程求出t即可得到P點坐標.【詳解】解:(1)拋物線解析式為y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)設P(t,﹣t2+4t﹣3),因為S△PAB=1,AB=3﹣1=2,所以?2?|﹣t2+4t﹣3|=1,當﹣t2+4t﹣3=1時,t1=t2=2,此時P點坐標為(2,1);當﹣t2+4t﹣3=﹣1時,t1=2+,t2=2﹣,此時P點坐標為(2+,﹣1)或(2﹣,﹣1),所以滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【點睛】本題考查了待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.19、(1)30;(2)當x=3.9時,轎車與貨車相遇;(3)在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【解析】

(1)根據圖象可知貨車5小時行駛300千米,由此求出貨車的速度為60千米/時,再根據圖象得出貨車出發后4.5小時轎車到達乙地,由此求出轎車到達乙地時,貨車行駛的路程為270千米,而甲、乙兩地相距300千米,則此時貨車距乙地的路程為:300﹣270=30千米;(2)先求出線段CD對應的函數關系式,再根據兩直線的交點即可解答;(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)根據圖象信息:貨車的速度V貨=,∵轎車到達乙地的時間為貨車出發后4.5小時,∴轎車到達乙地時,貨車行駛的路程為:4.5×60=270(千米),此時,貨車距乙地的路程為:300﹣270=30(千米).所以轎車到達乙地后,貨車距乙地30千米.故答案為30;(2)設CD段函數解析式為y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其圖象上,,解得,∴CD段函數解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴當x=3.9時,轎車與貨車相遇;(3)當x=2.5時,y貨=150,兩車相距=150﹣80=70>20,由題意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小時.答:在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【點睛】本題考查了一次函數的應用,對一次函數圖象的意義的理解,待定系數法求一次函數的解析式的運用,行程問題中路程=速度×時間的運用,本題有一定難度,其中求出貨車與轎車的速度是解題的關鍵.20、(1)見解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】

利用菱形四條邊相等,分別在四邊上進行截取和連接,得出AE=EB+BF=FC+CG+GD+DH=HA,進一步求得S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.即可.【詳解】(1)在AB邊上取點E,使AE=4,連接OA,OE;(2)在BC邊上取點F,使BF=3,連接OF;(3)在CD邊上取點G,使CG=2,連接OG;(4)在DA邊上取點H,使DH=1,連接OH.由于AE=EB+BF=FC+CG=GD+DH=HA.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.故答案為:3,2,1;EB、BF;FC、CG;GD、DH;HA.【點睛】此題考查菱形的性質,熟練掌握菱形的四條邊相等,對角線互相垂直是解題的關鍵.21、(1)甲型號的產品有10萬只,則乙型號的產品有10萬只;(2)安排甲型號產品生產15萬只,乙型號產品生產5萬只,可獲得最大利潤91萬元.【解析】

(1)設甲型號的產品有x萬只,則乙型號的產品有(20﹣x)萬只,根據銷售收入為300萬元可列方程18x+12(20﹣x)=300,解方程即可;(2)設安排甲型號產品生產y萬只,則乙型號產品生產(20﹣y)萬只,根據公司六月份投入總成本(原料總成本+生產提成總額)不超過239萬元列出不等式,求出不等式的解集確定出y的范圍,再根據利潤=售價﹣成本列出W與y的一次函數,根據y的范圍確定出W的最大值即可.【詳解】(1)設甲型號的產品有x萬只,則乙型號的產品有(20﹣x)萬只,根據題意得:18x+12(20﹣x)=300,解得:x=10,則20﹣x=20﹣10=10,則甲、乙兩種型號的產品分別為10萬只,10萬只;(2)設安排甲型號產品生產y萬只,則乙型號產品生產(20﹣y)萬只,根據題意得:13y+8.8(20﹣y)≤239,解得:y≤15,根據題意得:利潤W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,當y=15時,W最大,最大值為91萬元.所以安排甲型號產品生產15萬只,乙型號產品生產5萬只時,可獲得最大利潤為91萬元.考點:一元一次方程的應用;一元一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論