2024屆四川省成都市九校高考全國統考預測密卷數學試卷含解析_第1頁
2024屆四川省成都市九校高考全國統考預測密卷數學試卷含解析_第2頁
2024屆四川省成都市九校高考全國統考預測密卷數學試卷含解析_第3頁
2024屆四川省成都市九校高考全國統考預測密卷數學試卷含解析_第4頁
2024屆四川省成都市九校高考全國統考預測密卷數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省成都市九校高考全國統考預測密卷數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設則以線段為直徑的圓的方程是()A. B.C. D.2.已知數列的首項,且,其中,,,下列敘述正確的是()A.若是等差數列,則一定有 B.若是等比數列,則一定有C.若不是等差數列,則一定有 D.若不是等比數列,則一定有3.設為虛數單位,復數,則實數的值是()A.1 B.-1 C.0 D.24.若函數在處有極值,則在區間上的最大值為()A. B.2 C.1 D.35.將函數向左平移個單位,得到的圖象,則滿足()A.圖象關于點對稱,在區間上為增函數B.函數最大值為2,圖象關于點對稱C.圖象關于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根6.復數(i是虛數單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.608.《周易》歷來被人們視作儒家群經之首,它表現了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數的思想方法.我們用近代術語解釋為:把陽爻“-”當作數字“1”,把陰爻“--”當作數字“0”,則八卦所代表的數表示如下:卦名符號表示的二進制數表示的十進制數坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數是()A.18 B.17 C.16 D.159.已知集合,集合,那么等于()A. B. C. D.10.已知集合,,則等于()A. B. C. D.11.已知集合,則集合()A. B. C. D.12.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變二、填空題:本題共4小題,每小題5分,共20分。13.已知復數,且滿足(其中為虛數單位),則____.14.已知函數為奇函數,,且與圖象的交點為,,…,,則______.15.函數的圖像如圖所示,則該函數的最小正周期為________.16.已知,則展開式的系數為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平行四邊形中,,,現沿對角線將折起,使點A到達點P,點M,N分別在直線,上,且A,B,M,N四點共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.18.(12分)已知拋物線上一點到焦點的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內的動點在點右側,拋物線上第四象限內的動點,滿足,求直線的斜率范圍.19.(12分)設都是正數,且,.求證:.20.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.21.(12分)過點作傾斜角為的直線與曲線(為參數)相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.22.(10分)已知矩陣,求矩陣的特征值及其相應的特征向量.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

計算的中點坐標為,圓半徑為,得到圓方程.【詳解】的中點坐標為:,圓半徑為,圓方程為.故選:.【點睛】本題考查了圓的標準方程,意在考查學生的計算能力.2、C【解析】

根據等差數列和等比數列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數列,但是此時不成立,故本說法不正確;C:當時,因此有常數,因此是等差數列,因此當不是等差數列時,一定有,故本說法正確;D:當時,若時,顯然數列是等比數列,故本說法不正確.故選:C【點睛】本題考查了等差數列和等比數列的定義,考查了推理論證能力,屬于基礎題.3、A【解析】

根據復數的乘法運算化簡,由復數的意義即可求得的值.【詳解】復數,由復數乘法運算化簡可得,所以由復數定義可知,解得,故選:A.【點睛】本題考查了復數的乘法運算,復數的意義,屬于基礎題.4、B【解析】

根據極值點處的導數為零先求出的值,然后再按照求函數在連續的閉區間上最值的求法計算即可.【詳解】解:由已知得,,,經檢驗滿足題意.,.由得;由得或.所以函數在上遞增,在上遞減,在上遞增.則,,由于,所以在區間上的最大值為2.故選:B.【點睛】本題考查了導數極值的性質以及利用導數求函數在連續的閉區間上的最值問題的基本思路,屬于中檔題.5、C【解析】

由輔助角公式化簡三角函數式,結合三角函數圖象平移變換即可求得的解析式,結合正弦函數的圖象與性質即可判斷各選項.【詳解】函數,則,將向左平移個單位,可得,由正弦函數的性質可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關于直線對稱;當時,,由正弦函數性質可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數的圖象與性質可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數式的化簡,三角函數圖象平移變換,正弦函數圖象與性質的綜合應用,屬于中檔題.6、B【解析】

利用復數的四則運算以及幾何意義即可求解.【詳解】解:,則復數(i是虛數單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數的四則運算以及復數的幾何意義,屬于基礎題.7、D【解析】

先設A點的坐標為,根據對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數形結合思想,以及化歸與轉化思想的應用.8、B【解析】

由題意可知“屯”卦符號“”表示二進制數字010001,將其轉化為十進制數即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數字010001,轉化為十進制數的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.9、A【解析】

求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎題.10、A【解析】

進行交集的運算即可.【詳解】,1,2,,,,1,.故選:.【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎題.11、D【解析】

弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.12、C【解析】

根據線面平行與垂直的判定與性質逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

計算出,兩個復數相等,實部與實部相等,虛部與虛部相等,列方程組求解.【詳解】,所以,所以.故答案為:-8【點睛】此題考查復數的基本運算和概念辨析,需要熟練掌握復數的運算法則.14、18【解析】

由題意得函數f(x)與g(x)的圖像都關于點對稱,結合函數的對稱性進行求解即可.【詳解】函數為奇函數,函數關于點對稱,,函數關于點對稱,所以兩個函數圖象的交點也關于點(1,2)對稱,與圖像的交點為,,…,,兩兩關于點對稱,.故答案為:18【點睛】本題考查了函數對稱性的應用,結合函數奇偶性以及分式函數的性質求出函數的對稱性是解決本題的關鍵,屬于中檔題.15、【解析】

根據圖象利用,先求出的值,結合求出,然后利用周期公式進行求解即可.【詳解】解:由,得,,,則,,,即,則函數的最小正周期,故答案為:8【點睛】本題主要考查三角函數周期的求解,結合圖象求出函數的解析式是解決本題的關鍵.16、【解析】

先根據定積分求出的值,再用二項展開式公式即可求解.【詳解】因為所以的通項公式為當時,當時,故展開式中的系數為故答案為:【點睛】此題考查定積分公式,二項展開式公式等知識點,屬于簡單題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】

(1)根據余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質定理,//,最后可得結果.(2)根據二面角平面角大小為,可知N為的中點,然后利用建系,計算以及平面的一個法向量,利用向量的夾角公式,可得結果.【詳解】(1)不妨設,則,在中,,則,因為,所以,因為//,且A、B、M、N四點共面,所以//平面.又平面平面,所以//.而,.(2)因為平面平面,且,所以平面,,因為,所以平面,,因為,平面與平面夾角為,所以,在中,易知N為的中點,如圖,建立空間直角坐標系,則,,,,,,,,設平面的一個法向量為,則由,令,得.設與平面所成角為,則.【點睛】本題考查線面平行的性質定理以及線面角,熟練掌握利用建系的方法解決幾何問題,將幾何問題代數化,化繁為簡,屬中檔題.18、(1)1;(2)【解析】

(1)根據點到焦點的距離為2,利用拋物線的定義得,再根據點在拋物線上有,列方程組求解,(2)設,根據,再由,求得,當,即時,直線斜率不存在;當時,,令,利用導數求解,【詳解】(1)因為點到焦點的距離為2,即點到準線的距離為2,得,又,解得,所以拋物線方程為(2)設,由由,則當,即時,直線斜率不存在;當時,令,所以在上分別遞減則【點睛】本題主要考查拋物線定義及方程的應用,還考查了分類討論的思想和運算求解的能力,屬于中檔題,19、證明見解析【解析】

利用比較法進行證明:把代數式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因為,,所以,∴成立,又都是正數,∴,①同理,∴.【點睛】本題考查利用比較法證明不等式;考查學生的邏輯推理能力和運算求解能力;把差變形為因式乘積的形式是證明本題的關鍵;屬于中檔題。20、(1);(2)【解析】

(1)根據同角三角函數式可求得,結合正弦和角公式求得,即可求得,進而由三角函數(2)設根據余弦定理及基本不等式,可求得的最大值,結合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數關系式可得,則,則,所以.(2)設在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數式的應用,余弦定理及不等式式求最值的綜合應用,屬于中檔題.21、(1);(2).【解析】

(1)將曲線的參數方程消參得到普通方程;(2)寫出直線MN的參數方程,將參數方程代入曲線方程,并將其化為一個關于的一元二次方程,根據,結合韋達定理和余弦函數的性質,即可求出的最小值.【詳解】(1)由曲線C的參數方程(是參數),可得,即曲線C的一般方程為.(2)直線MN的參數方程為(t為參數),將直線MN的參數方程代入曲線,得,整理得,設M,N對應的對數分別為,,則,當時,取得最小值為.【點睛】該題考查的是有關參數方程的問題,涉及到的知識點有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論