北京市清華大學中學2023-2024學年高考沖刺數學模擬試題含解析_第1頁
北京市清華大學中學2023-2024學年高考沖刺數學模擬試題含解析_第2頁
北京市清華大學中學2023-2024學年高考沖刺數學模擬試題含解析_第3頁
北京市清華大學中學2023-2024學年高考沖刺數學模擬試題含解析_第4頁
北京市清華大學中學2023-2024學年高考沖刺數學模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市清華大學中學2023-2024學年高考沖刺數學模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設f(x)是定義在R上的偶函數,且在(0,+∞)單調遞減,則()A. B.C. D.2.生活中人們常用“通五經貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.為弘揚中國傳統文化,某校在周末學生業余興趣活動中開展了“六藝”知識講座,每藝安排一節,連排六節,則滿足“數”必須排在前兩節,“禮”和“樂”必須分開安排的概率為()A. B. C. D.3.設集合,,則().A. B.C. D.4.已知函數,其中,記函數滿足條件:為事件,則事件發生的概率為A. B.C. D.5.己知,,,則()A. B. C. D.6.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.7.已知實數滿足則的最大值為()A.2 B. C.1 D.08.如圖所示,網絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.89.設函數,若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.10.記其中表示不大于x的最大整數,若方程在在有7個不同的實數根,則實數k的取值范圍()A. B. C. D.11.已知,若對任意,關于x的不等式(e為自然對數的底數)至少有2個正整數解,則實數a的取值范圍是()A. B. C. D.12.在中所對的邊分別是,若,則()A.37 B.13 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中項的系數為_______.14.設,滿足約束條件,若目標函數的最大值為,則的最小值為______.15.在中,角A,B,C的對邊分別為a,b,c,且,則________.16.已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=x-lnx,g(x)=x2-ax.(1)求函數f(x)在區間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數h(x)圖像上任意兩點,且滿足>1,求實數a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實數a的最大值.18.(12分)設函數.(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.19.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.20.(12分)如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.21.(12分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.22.(10分)已知矩陣,求矩陣的特征值及其相應的特征向量.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用是偶函數化簡,結合在區間上的單調性,比較出三者的大小關系.【詳解】是偶函數,,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數的奇偶性和單調性比較大小,屬于基礎題.2、C【解析】

分情況討論,由間接法得到“數”必須排在前兩節,“禮”和“樂”必須分開的事件個數,不考慮限制因素,總數有種,進而得到結果.【詳解】當“數”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當“數”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數有種,故滿足條件的事件的概率為:故答案為:C.【點睛】解排列組合問題要遵循兩個原則:①按元素(或位置)的性質進行分類;②按事情發生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).3、D【解析】

根據題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,4、D【解析】

由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.5、B【解析】

先將三個數通過指數,對數運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數、對數的大小比較,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.6、C【解析】

利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據兩對立事件的概率和為1求解即可.【詳解】設“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎題.7、B【解析】

作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經過點時,其截距最大,此時最大得,當時,故選:B【點睛】考查線性規劃,是基礎題.8、A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.9、A【解析】

由求出范圍,結合正弦函數的圖象零點特征,建立不等量關系,即可求解.【詳解】當時,,∵在上有且僅有5個零點,∴,∴.故選:A.【點睛】本題考查正弦型函數的性質,整體代換是解題的關鍵,屬于基礎題.10、D【解析】

做出函數的圖象,問題轉化為函數的圖象在有7個交點,而函數在上有3個交點,則在上有4個不同的交點,數形結合即可求解.【詳解】作出函數的圖象如圖所示,由圖可知方程在上有3個不同的實數根,則在上有4個不同的實數根,當直線經過時,;當直線經過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數根.故選:D.【點睛】本題考查方程根的個數求參數,利用函數零點和方程之間的關系轉化為兩個函數的交點是解題的關鍵,運用數形結合是解決函數零點問題的基本思想,屬于中檔題.11、B【解析】

構造函數(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數解,構造函數,,通過導數研究單調性,由可知,要使得至少有2個正整數解,只需即可,代入可求得結果.【詳解】構造函數(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數在判斷函數單調性中的應用,考查不等式成立問題中求解參數問題,考查學生分析問題的能力和邏輯推理能力,難度較難.12、D【解析】

直接根據余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】

根據二項定理展開式,求得r的值,進而求得系數.【詳解】根據二項定理展開式的通項式得所以,解得所以系數【點睛】本題考查了二項式定理的簡單應用,屬于基礎題.14、【解析】

先根據條件畫出可行域,設,再利用幾何意義求最值,將最大值轉化為軸上的截距,只需求出直線,過可行域內的點時取得最大值,從而得到一個關于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區域如圖所示陰影部分,當直線過直線與直線的交點時,目標函數取得最大,即,即,而.故答案為.【點睛】本題主要考查了基本不等式在最值問題中的應用、簡單的線性規劃,以及利用幾何意義求最值,屬于基礎題.15、【解析】

利用正弦定理將邊化角,即可容易求得結果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現邊角互化,屬基礎題.16、【解析】

作出準線,過作準線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉化為點到準線的距離,利用平面幾何知識計算出直線的斜率.【詳解】設是準線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點睛】本題考查拋物線的焦點弦問題,解題關鍵是利用拋物線的定義,把拋物線上點到焦點距離轉化為該點到準線的距離,用平面幾何方法求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】

(1)是研究在動區間上的最值問題,這類問題的研究方法就是通過討論函數的極值點與所研究的區間的大小關系來進行求解.(2)注意到函數h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)-h(x2)<x1-x2(x1<x2)恒成立,從而構造函數F(x)=h(x)-x在(0,+∞)上單調遞增,進而等價于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉化為求對應函數的最值,得到a≤,再利用導數求函數M(x)=的最大值,這要用到二次求導,才可確定函數單調性,進而確定函數最值.【詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當t≥1時,f(x)在[t,t+1]上單調遞增,f(x)的最小值為f(t)=t-lnt;當0<t<1時,f(x)在區間(t,1)上為減函數,在區間(1,t+1)上為增函數,f(x)的最小值為f(1)=1.綜上,m(t)=(2)h(x)=x2-(a+1)x+lnx,不妨取0<x1<x2,則x1-x2<0,則由,可得h(x1)-h(x2)<x1-x2,變形得h(x1)-x1<h(x2)-x2恒成立.令F(x)=h(x)-x=x2-(a+2)x+lnx,x>0,則F(x)=x2-(a+2)x+lnx在(0,+∞)上單調遞增,故F′(x)=2x-(a+2)+≥0在(0,+∞)上恒成立,所以2x+≥a+2在(0,+∞)上恒成立.因為2x+≥2,當且僅當x=時取“=”,所以a≤2-2.(3)因為f(x)≥,所以a(x+1)≤2x2-xlnx.因為x∈(0,1],則x+1∈(1,2],所以?x∈(0,1],使得a≤成立.令M(x)=,則M′(x)=.令y=2x2+3x-lnx-1,則由y′==0可得x=或x=-1(舍).當x∈時,y′<0,則函數y=2x2+3x-lnx-1在上單調遞減;當x∈時,y′>0,則函數y=2x2+3x-lnx-1在上單調遞增.所以y≥ln4->0,所以M′(x)>0在x∈(0,1]時恒成立,所以M(x)在(0,1]上單調遞增.所以只需a≤M(1),即a≤1.所以實數a的最大值為1.【點睛】本題考查了函數與導數綜合問題,考查了學生綜合分析,轉化與劃歸,數學運算能力,屬于難題.18、(1)或;(2)或.【解析】試題分析:(1)根據絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價于或或,解得:或.故不等式的解集為或.(2)因為:所以,由題意得:,解得或.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.19、(1);(2)或.【解析】

(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設直線方程,與橢圓方程聯立,運用根與系數關系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,,直線,點F到直線l的距離為,,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設方程為,聯立,消去得,,,設,,,,線段AB的中垂線交直線l于點Q,所以橫坐標為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線與橢圓的位置關系,要熟練應用根與系數關系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.20、(1)見解析;(II).【解析】

試題分析:(1)取中點,連結,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設,由,得,求出平面的法向量和平面的法向量,,根據空間向量夾角余弦公式能求出結果.試題解析:(I)取中點,連結,依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因為,所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點,建立空間直角坐標系如圖所示,則,由可得點的坐標所以,設平面的法向量為,則,即解得,令,得,顯然平面的一個法向量為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論