2024屆四川省瀘州市高考數學五模試卷含解析_第1頁
2024屆四川省瀘州市高考數學五模試卷含解析_第2頁
2024屆四川省瀘州市高考數學五模試卷含解析_第3頁
2024屆四川省瀘州市高考數學五模試卷含解析_第4頁
2024屆四川省瀘州市高考數學五模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省瀘州市高考數學五模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.2.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.43.下列函數中既關于直線對稱,又在區間上為增函數的是()A.. B.C. D.4.方程在區間內的所有解之和等于()A.4 B.6 C.8 D.105.設復數z=,則|z|=()A. B. C. D.6.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.7.將函數的圖像向右平移個單位長度,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,若為奇函數,則的最小值為()A. B. C. D.8.命題“”的否定為()A. B.C. D.9.己知函數的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.10.秦九韶是我國南寧時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.11.設全集U=R,集合,則()A. B. C. D.12.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或二、填空題:本題共4小題,每小題5分,共20分。13.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.14.已知集合,其中,.且,則集合中所有元素的和為_________.15.已知函數在上僅有2個零點,設,則在區間上的取值范圍為_______.16.拋物線上到其焦點的距離為的點的個數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)△ABC的內角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.18.(12分)已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側),求四邊形面積的最大值.19.(12分)近幾年一種新奇水果深受廣大消費者的喜愛,一位農戶發揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經濟效益.根據資料顯示,產出的新奇水果的箱數x(單位:十箱)與成本y(單位:千元)的關系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數)進行模擬.(Ⅰ)若該農戶產出的該新奇水果的價格為150元/箱,試預測該新奇水果100箱的利潤是多少元.|.(Ⅱ)據統計,10月份的連續11天中該農戶每天為甲地配送的該新奇水果的箱數的頻率分布直方圖如圖所示.(i)若從箱數在內的天數中隨機抽取2天,估計恰有1天的水果箱數在內的概率;(ⅱ)求這11天該農戶每天為甲地配送的該新奇水果的箱數的平均值.(每組用該組區間的中點值作代表)參考數據與公式:設,則0.541.81.530.45線性回歸直線中,,.20.(12分)[選修45:不等式選講]已知都是正實數,且,求證:.21.(12分)如圖,過點且平行與x軸的直線交橢圓于A、B兩點,且.(1)求橢圓的標準方程;(2)過點M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點E、F,求證:是定值.22.(10分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點.(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題2、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。3、C【解析】

根據函數的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區間上為減函數,則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數基本性質,根據函數的解析式判斷函數的對稱性和單調性,屬于基礎題.4、C【解析】

畫出函數和的圖像,和均關于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數和的圖像,易知:和均關于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數關于點中心對稱是解題的關鍵.5、D【解析】

先用復數的除法運算將復數化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點睛】本題考查復數的基本概念和基本運算,屬于基礎題.6、C【解析】

根據平面向量基本定理,用來表示,然后利用數量積公式,簡單計算,可得結果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數量積公式,掌握公式,細心觀察,屬基礎題.7、C【解析】

根據三角函數的變換規則表示出,根據是奇函數,可得的取值,再求其最小值.【詳解】解:由題意知,將函數的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,,因為是奇函數,所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數的變換以及三角函數的性質,屬于基礎題.8、C【解析】

套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎題.9、A【解析】

先將函數解析式化簡為,結合題意可求得切點及其范圍,根據導數幾何意義,即可求得的值.【詳解】函數即直線與函數圖象恰有四個公共點,結合圖象知直線與函數相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數的圖像與性質的綜合應用,由交點及導數的幾何意義求函數值,屬于難題.10、B【解析】

列出循環的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環,,,,繼續循環;第二次循環,,,,繼續循環;第三次循環,,,,跳出循環;輸出.故選:B.【點睛】本題考查根據算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.11、A【解析】

求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數不等式和二次不等式的解法,屬于基礎題.12、C【解析】

先根據弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現了到焦點的距離時,一般考慮拋物線的定義.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設,則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關系式,即可求出橢圓的離心率.【詳解】如圖,設,則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關系;利用橢圓的定義,結合焦點三角形和余弦定理是求解本題的關鍵;屬于中檔題、常考題型.14、2889【解析】

先計算集合中最小的數為,最大的數,可得,求和即得解.【詳解】當時,集合中最小數;當時,得到集合中最大的數;故答案為:2889【點睛】本題考查了數列與集合綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.15、【解析】

先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.16、【解析】

設拋物線上任意一點的坐標為,根據拋物線的定義求得,并求出對應的,即可得出結果.【詳解】設拋物線上任意一點的坐標為,拋物線的準線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數為.故答案為:.【點睛】本題考查利用拋物線的定義求點的坐標,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據題設和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設得,即.由正弦定理得.故.(2)由題設及(1)得,即.所以,故.由題設得,即.由余弦定理得,即,得.故的周長為.點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關系轉化為角的關系,有時需將角的關系轉化為邊的關系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉化為角的關系,建立函數關系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.18、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)結合已知可得,求出a,b的值,即可得橢圓方程;(Ⅱ)由題意可知,直線的斜率存在,設出直線方程,聯立直線方程與橢圓方程,利用判別式等于0可得,聯立直線方程與圓的方程,結合根與系數的關系求得,利用弦長公式及點到直線的距離公式,求出,得到,整理后利用基本不等式求最值.【詳解】解:(Ⅰ)可得,結合,解得,,,得橢圓方程;(Ⅱ)易知直線的斜率k存在,設:,由,得,由,得,∵,設點O到直線:的距離為d,,,由,得,,,∴∴,∴而,,易知,∴,則,四邊形的面積當且僅當,即時取“”.∴四邊形面積的最大值為4.【點睛】本題考查了由求橢圓的標準方程,直線與橢圓的位置關系,考查了學生的計算能力,綜合性比較強,屬于難題.19、(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【解析】

(Ⅰ)根據參考數據得到和,代入得到回歸直線方程,,再代入求成本,最后代入利潤公式;(Ⅱ)(ⅰ)首先分別計算水果箱數在和內的天數,再用編號列舉基本事件的方法求概率;(ⅱ)根據頻率分布直方圖直接計算結果.【詳解】(Ⅰ)根據題意,,所以,所以.又,所以.所以時,(千元),即該新奇水果100箱的成本為8314元,故該新奇水果100箱的利潤.(Ⅱ)(i)根據頻率分布直方圖,可知水果箱數在內的天數為設這兩天分別為a,b,水果箱數在內的天數為,設這四天分別為A,B,C,D,所以隨機抽取2天的基本結果為,,,,,,,,,,,,,,,共15種.滿足恰有1天的水果箱數在內的結果為,,,,,,,,共8種,所以估計恰有1天的水果箱數在內的概率為.(ⅱ)這11天該農戶每天為甲地配送的該新奇水果的箱數的平均值為(箱).【點睛】本題考查考查回歸直線方程,統計,概率,均值的綜合問題,意在考查分析數據,應用數據,解決問題的能力,屬于中檔題型.20、見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式21、(1);(2)證明見解析.【解析】

(1)由題意求得的坐標,代入橢圓方程求得,由此求得橢圓的標準方程.(2)設出直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論