2024屆四川省成都經開區實驗中學高三第二次診斷性檢測數學試卷含解析_第1頁
2024屆四川省成都經開區實驗中學高三第二次診斷性檢測數學試卷含解析_第2頁
2024屆四川省成都經開區實驗中學高三第二次診斷性檢測數學試卷含解析_第3頁
2024屆四川省成都經開區實驗中學高三第二次診斷性檢測數學試卷含解析_第4頁
2024屆四川省成都經開區實驗中學高三第二次診斷性檢測數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省成都經開區實驗中學高三第二次診斷性檢測數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,關于x的方程f(x)=a存在四個不同實數根,則實數a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)2.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣123.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統計如圖中的條形圖,已知年的就醫費用比年的就醫費用增加了元,則該人年的儲畜費用為()A.元 B.元 C.元 D.元4.若執行如圖所示的程序框圖,則輸出的值是()A. B. C. D.45.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)6.已知定義在上的奇函數滿足,且當時,,則()A.1 B.-1 C.2 D.-27.已知函數在區間上恰有四個不同的零點,則實數的取值范圍是()A. B. C. D.8.復數(i為虛數單位)的共軛復數是A.1+i B.1?i C.?1+i D.?1?i9.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.10.已知奇函數是上的減函數,若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.411.已知,,,,則()A. B. C. D.12.若函數在處取得極值2,則()A.-3 B.3 C.-2 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的準線上一點,F為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.14.若關于的不等式在時恒成立,則實數的取值范圍是_____15.(5分)已知,且,則的值是____________.16.已知向量,,且,則實數m的值是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數,當時,討論零點的個數.18.(12分)已知動點到定點的距離比到軸的距離多.(1)求動點的軌跡的方程;(2)設,是軌跡在上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.19.(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.20.(12分)某商場為改進服務質量,隨機抽取了200名進場購物的顧客進行問卷調查.調查后,就顧客“購物體驗”的滿意度統計如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認為顧客購物體驗的滿意度與性別有關?(2)為答謝顧客,該商場對某款價格為100元/件的商品開展促銷活動.據統計,在此期間顧客購買該商品的支付情況如下:支付方式現金支付購物卡支付APP支付頻率10%30%60%優惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應事件發生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數學期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)已知在中,角、、的對邊分別為,,,,.(1)若,求的值;(2)若,求的面積.22.(10分)已知函數.(1)若在處取得極值,求的值;(2)求在區間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數零點問題,關鍵在于等價轉化,將問題轉化為通過導函數討論函數單調性解決問題.2、D【解析】

分別聯立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結果.【詳解】設,聯立則,因為直線經過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數,屬基礎題。3、A【解析】

根據2018年的家庭總收人為元,且就醫費用占得到就醫費用,再根據年的就醫費用比年的就醫費用增加了元,得到年的就醫費用,然后由年的就醫費用占總收人,得到2019年的家庭總收人再根據儲畜費用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫費用占所以就醫費用因為年的就醫費用比年的就醫費用增加了元,所以年的就醫費用元,而年的就醫費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【點睛】本題主要考查統計中的折線圖和條形圖的應用,還考查了建模解模的能力,屬于基礎題.4、D【解析】

模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現,由此可得結論.【詳解】;如此循環下去,當時,,此時不滿足,循環結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.5、C【解析】

根據并集的求法直接求出結果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎題.6、B【解析】

根據f(x)是R上的奇函數,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數,即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數,且;∴;∴;∴的周期為4;∵時,;∴由奇函數性質可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數的奇偶性和周期性求值,此類問題一般根據條件先推導出周期,利用函數的周期變換來求解,考查理解能力和計算能力,屬于中等題.7、A【解析】

函數的零點就是方程的解,設,方程可化為,即或,求出的導數,利用導數得出函數的單調性和最值,由此可根據方程解的個數得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數解,故在區間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數的零點.考查轉化與化歸思想,函數零點轉化為方程的解,方程的解再轉化為研究函數的性質,本題考查了學生分析問題解決問題的能力.8、B【解析】分析:化簡已知復數z,由共軛復數的定義可得.詳解:化簡可得z=∴z的共軛復數為1﹣i.故選B.點睛:本題考查復數的代數形式的運算,涉及共軛復數,屬基礎題.9、D【解析】

三個單位的人數可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數可能為2,2,1或3,1,1;基本事件總數有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.10、B【解析】

根據函數的奇偶性和單調性得到可行域,畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】奇函數是上的減函數,則,且,畫出可行域和目標函數,,即,表示直線與軸截距的相反數,根據平移得到:當直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數的單調性和奇偶性,線性規劃問題,意在考查學生的綜合應用能力,畫出圖像是解題的關鍵.11、D【解析】

令,求,利用導數判斷函數為單調遞增,從而可得,設,利用導數證出為單調遞減函數,從而證出,即可得到答案.【詳解】時,令,求導,,故單調遞增:∴,當,設,,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構造函數法,利用導數判斷式子的大小,屬于中檔題.12、A【解析】

對函數求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數的導數與極值,考查了學生的運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據雙曲線定義得到實軸長,結合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應用、雙曲線定義的應用;關鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據拋物線切線方程的求解方法求得點坐標.14、【解析】

利用對數函數的單調性,將不等式去掉對數符號,再依據分離參數法,轉化成求構造函數最值問題,進而求得的取值范圍。【詳解】由得,兩邊同除以,得到,,,設,,由函數在上遞減,所以,故實數的取值范圍是。【點睛】本題主要考查對數函數的單調性,以及恒成立問題的常規解法——分離參數法。15、【解析】

由于,且,則,得,則.16、1【解析】

根據即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點睛】本題考查向量垂直的充要條件,向量數量積的坐標運算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)設切點坐標為,然后根據可解得實數的值;(2)令,,然后對實數進行分類討論,結合和的符號來確定函數的零點個數.【詳解】(1),,設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數為增函數;當時,,此時,函數為減函數.,.①當,即當時,函數有一個零點;②當,即當時,函數有兩個零點;③當,即當時,函數有三個零點;④當,即當時,函數有兩個零點;⑤當,即當時,函數只有一個零點.綜上所述,當或時,函數只有一個零點;當或時,函數有兩個零點;當時,函數有三個零點.【點睛】本題考查了利用導數的幾何意義研究切線方程和利用導數研究函數的單調性與極值,關鍵是分類討論思想的應用,屬難題.18、(1)或;(2)證明見解析,定點【解析】

(1)設,由題意可知,對的正負分情況討論,從而求得動點的軌跡的方程;(2)設其方程為,與拋物線方程聯立,利用韋達定理得到,所以,所以直線的方程可表示為,即,所以直線恒過定點.【詳解】(1)設,動點到定點的距離比到軸的距離多,,時,解得,時,解得.動點的軌跡的方程為或(2)證明:如圖,設,,由題意得(否則)且,所以直線的斜率存在,設其方程為,將與聯立消去,得,由韋達定理知,,①顯然,,,,將①式代入上式整理化簡可得:,所以,此時,直線的方程可表示為,即,所以直線恒過定點.【點睛】本題主要考查了動點軌跡,考查了直線與拋物線的綜合,是中檔題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用勾股定理結合條件求得和,利用橢圓的定義求得的值,進而可得出,則橢圓的標準方程可求;(Ⅱ)設點、,將直線的方程與橢圓的方程聯立,利用韋達定理與弦長公式求出,利用幾何法求得直線截圓所得弦長,可得出關于的函數表達式,利用不等式的性質可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標準方程為;(Ⅱ)設點、,聯立消去,得,,則,,設圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中弦長之積的取值范圍的求解,涉及韋達定理與弦長公式的應用,考查計算能力,屬于中等題.20、(1)有97.5%的把握認為顧客購物體驗的滿意度與性別有關;(2)67元,見解析.【解析】

(1)根據表格數據代入公式,結合臨界值即得解;(2)的可能取值為40,60,80,1,根據題意依次計算概率,列出分布列,求數學期望即可.【詳解】(1)由題得,所以,有97.5%的把握認為顧客購物體驗的滿意度與性別有關.(2)由題意可知的可能取值為40,60,80,1.,,,.則的分布列為4060801所以,(元).【點睛】本題考查了統計和概率綜合,考查了列聯表,隨機變量的分布列和數學期望等知識點,考查了學生數據處理,綜合分析,數學運算的能力,屬于中檔題.21、(1)7(2)14【解析】

(1)在中,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論