




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省天門仙桃潛江高三適應性調研考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.()A. B. C. D.2.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.3.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.34.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個5.的展開式中有理項有()A.項 B.項 C.項 D.項6.若,則的虛部是()A. B. C. D.7.已知函數在區間上恰有四個不同的零點,則實數的取值范圍是()A. B. C. D.8.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.9.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或910.從集合中隨機選取一個數記為,從集合中隨機選取一個數記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.11.定義在上函數滿足,且對任意的不相等的實數有成立,若關于x的不等式在上恒成立,則實數m的取值范圍是()A. B. C. D.12.在中,內角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設等差數列的前項和為,若,,則數列的公差________,通項公式________.14.某種牛肉干每袋的質量服從正態分布,質檢部門的檢測數據顯示:該正態分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質量低于的袋數大約是_____袋.15.假設10公里長跑,甲跑出優秀的概率為,乙跑出優秀的概率為,丙跑出優秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優秀的概率為________.16.的展開式中的系數為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)[選修45:不等式選講]已知都是正實數,且,求證:.18.(12分)已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.(1)證明:當取得最小值時,橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.19.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.20.(12分)已知函數.(1)若,證明:當時,;(2)若在只有一個零點,求的值.21.(12分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.22.(10分)已知是各項都為正數的數列,其前項和為,且為與的等差中項.(1)求證:數列為等差數列;(2)設,求的前100項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.2、C【解析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.3、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.4、C【解析】
計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.5、B【解析】
由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.6、D【解析】
通過復數的乘除運算法則化簡求解復數為:的形式,即可得到復數的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復數的代數形式的混合運算,復數的基本概念,屬于基礎題.7、A【解析】
函數的零點就是方程的解,設,方程可化為,即或,求出的導數,利用導數得出函數的單調性和最值,由此可根據方程解的個數得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數解,故在區間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數的零點.考查轉化與化歸思想,函數零點轉化為方程的解,方程的解再轉化為研究函數的性質,本題考查了學生分析問題解決問題的能力.8、D【解析】
根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.9、C【解析】
由題意利用兩個向量的數量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數量積的定義和公式,屬于基礎題.10、A【解析】
設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.11、B【解析】
結合題意可知是偶函數,且在單調遞減,化簡題目所給式子,建立不等式,結合導函數與原函數的單調性關系,構造新函數,計算最值,即可.【詳解】結合題意可知為偶函數,且在單調遞減,故可以轉換為對應于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數的基本性質和導函數與原函數單調性關系,計算范圍,可以轉化為函數,結合導函數,計算最值,即可得出答案.12、A【解析】
根據正弦定理可得,求出,根據平方關系求出.由兩端平方,求的最大值,根據三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數量積運算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
直接利用等差數列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數列的基本計算,意在考查學生的計算能力.14、1【解析】
根據正態分布對稱性,求得質量低于的袋數的估計值.【詳解】由于,所以,所以袋牛肉干中,質量低于的袋數大約是袋.故答案為:【點睛】本小題主要考查正態分布對稱性的應用,屬于基礎題.15、【解析】
分跑出優秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優秀有三種情況:其一是只有甲、乙兩人跑出優秀的概率為;其二是只有甲、丙兩人跑出優秀的概率為;其三是只有乙、丙兩人跑出優秀的概率為,三種情況相加得.即剛好有2人跑出優秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎題.16、3【解析】
分別用1和進行分類討論即可【詳解】當第一個因式取1時,第二個因式應取含的項,則對應系數為:;當第一個因式取時,第二個因式應取含的項,則對應系數為:;故的展開式中的系數為.故答案為:3【點睛】本題考查二項式定理中具體項對應系數的求解,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式18、(1)證明見解析;(2)存在,【解析】
(1)將點代入橢圓方程得到,結合基本不等式,求得取得最小值時,進而證得橢圓的離心率為.(2)當直線的斜率不存在時,根據橢圓的對稱性,求得到直線的距離.當直線的斜率存在時,聯立直線的方程和橢圓方程,寫出韋達定理,利用,則列方程,求得的關系式,進而求得到直線的距離.根據上述分析判斷出所求的圓存在,進而求得定圓的方程.【詳解】(1)證明:∵橢圓經過點,∴,∴,當且僅當,即時,等號成立,此時橢圓的離心率.(2)解:∵橢圓的焦距為2,∴,又,∴,.當直線的斜率不存在時,由對稱性,設,.∵,在橢圓上,∴,∴,∴到直線的距離.當直線的斜率存在時,設的方程為.由,得,.設,,則,.∵,∴,∴,∴,即,∴到直線的距離.綜上,到直線的距離為定值,且定值為,故存在定圓:,使得圓與直線總相切.【點睛】本小題主要考查點和橢圓的位置關系,考查基本不等式求最值,考查直線和橢圓的位置關系,考查點到直線的距離公式,考查分類討論的數學思想方法,考查運算求解能力,屬于中檔題.19、(1);(2).【解析】
(1)由已知短軸長求出,離心率求出關系,結合,即可求解;(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據弦長公式,求出,即可求出結論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當直線的斜率都存在時,由對稱性不妨設直線的方程為,由,,設,則,則,由橢圓對稱性可設直線的斜率為,則,.令,則,當時,,當時,由得,所以,即,且.②當直線的斜率其中一條不存在時,根據對稱性不妨設設直線的方程為,斜率不存在,則,,此時.若設的方程為,斜率不存在,則,綜上可知的取值范圍是.【點睛】本題考查橢圓標準方程、直線與橢圓的位置關系,注意根與系數關系、弦長公式、函數最值、橢圓性質的合理應用,意在考查邏輯推理、計算求解能力,屬于難題.20、(1)見解析;(2)【解析】
分析:(1)先構造函數,再求導函數,根據導函數不大于零得函數單調遞減,最后根據單調性證得不等式;(2)研究零點,等價研究的零點,先求導數:,這里產生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設函數,則.當時,,所以在單調遞減.而,故當時,,即.(2)設函數.在只有一個零點當且僅當在只有一個零點.(i)當時,,沒有零點;(ii)當時,.當時,;當時,.所以在單調遞減,在單調遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數零點的情況求參數值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數后轉化為函數的值域(最值)問題求解.(3)轉化為兩熟悉的函數圖象的上、下關系問題,從而構建不等式求解.21、(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當時,,,當時,②,①②得:,,適合,故;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內蒙古呼和浩特實驗中學2024-2025學年下學期初三數學試題第一次月考考試試卷含解析
- 四川航天職業技術學院《歷史影視劇鑒賞》2023-2024學年第一學期期末試卷
- 攀枝花學院《素描2》2023-2024學年第一學期期末試卷
- 商洛學院《非營利組織管理》2023-2024學年第二學期期末試卷
- 2025年圖書館學與信息學考試卷及答案
- 2025年市場研究與分析專業考研試題及答案
- 2025年中醫執業醫師考試試卷及答案
- 山西省呂梁地區離石區2024-2025學年三下數學期末監測試題含解析
- 上海視覺藝術學院《臨床藥學》2023-2024學年第二學期期末試卷
- 微信小程序電商運營培訓及用戶體驗優化協議
- 互聯網技術支持的新型健康管理模式對慢病人群的應用研究
- 2024年湖北省武漢市高考數學一調試卷
- 愿站成一棵樹金波
- JJG 4-2015鋼卷尺行業標準
- 脫貧攻堅戰在2024年取得全面勝利
- 天津市2022-2023學年八年級下學期物理期中試卷(含答案)1
- 數學與人工智能
- 消防廉政建設教育課件
- ISO27001標準培訓課件
- 2023年許昌職業技術學院教師招聘考試歷年真題庫
- 掘進隊管理制度
評論
0/150
提交評論