




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
《正弦定理》的說課稿【9篇】《正弦定理》的說課稿篇一我今天說課的題目是:人教A版普通高中課程標準實驗教科書數學必修5第一章第一節的第一課時《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。一、教材分析"解三角形"既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課"正弦定理",作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從"實際問題"抽象成"數學問題"的建模過程中,體驗"觀察——猜想——證明——應用"這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和"用數學"的意識。二、學情分析我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對"一些重要的數學思想和數學方法"的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。三、教學目標1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用"等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立"數學與我有關,數學是有用的,我要用數學,我能用數學"的理念。2、教學重點、難點教學重點:正弦定理的發現與證明;正弦定理的簡單應用。教學難點:正弦定理證明及應用。四、教學方法與手段為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用"問題教學法",即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。五、教學過程為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:(一)創設情景,揭示課題問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?1671年兩個法國天文學家首次測出了地月之間的距離大約為385400km,你知道他們當時是怎樣測出這個距離的嗎?問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。(二)特殊入手,發現規律問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA=,sinB=,sinC=,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?引導啟發學生發現特殊情形下的正弦定理(三)類比歸納,嚴格證明問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發引導學生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務必啟發學生用向量法完成證明。)放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發﹝940-998﹞首先發現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在1000年以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。通過本段內容的講解,滲透一些數學史的'內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。(四)強化理解,簡單應用下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢?我們先小試牛刀,來一個簡單的問題:問題7:(教材例題1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。強化練習讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發現教材8頁得內容:《解三角形的進一步討論》(五)小結歸納,深化拓展1、正弦定理2、正弦定理的證明方法3、正弦定理的應用4、涉及的數學思想和方法。師生共同總結本節課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發展、完善的過程。(六)布置作業,鞏固提高1、教材10頁習題1、1A組第1題。2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB,c=2RsinC對不同水平的學生設計不同梯度的作業,尊重學生的個性差異,有利于因材施教的教學原則的貫徹。(七)板書設計:(略)《正弦定理》的說課稿篇二一、教學目標:掌握正弦定理的基本概念及其應用;理解正弦定理在三角形中的作用;掌握利用正弦定理解決實際問題的方法。二、教學重點:掌握正弦定理的基本概念及其應用;理解正弦定理在三角形中的作用;掌握利用正弦定理解決實際問題的方法。三、教學難點:掌握利用正弦定理解決實際問題的方法;理解正弦定理在三角形中的作用。四、教學方法:講授法;示范法;練習法。五、教學過程:導入(5分鐘)通過觀察實物或圖片,讓學生回想起在三角形中哪些數學知識點。然后簡單介紹正弦定理,引導學生理解正弦定理在三角形中的作用。新知講解(20分鐘)(1)什么是正弦定理?正弦定理是指在任意三角形中,任意一邊上的正弦值與另外兩邊的正弦值之比相等。具體表達式為:a/sinA=b/sinB=c/sinC。(2)正弦定理的應用利用正弦定理可以解決三角形的任意邊的長度問題,包括已知一邊、一角、一對相鄰邊的長度,求第三邊的`長度;已知兩邊、一個角的正弦值和第三邊的長度,求第二邊的長度。(3)正弦定理的證明正弦定理的證明可以采用反證法。首先,根據余弦定理,我們可以得到以下方程:a=b+c-2bc*cosA。然后,我們可以根據反證法證明這個方程的兩邊與sinA成比例,即a/sinA=b/sinB=c/sinC。練習(20分鐘)解答學生的練習題(20分鐘)老師應該針對學生的錯誤答案進行解答,并給予正確的指導和糾正。對于學生做對的題目,可以給予表揚和鼓勵。同時,也要引導學生自己總結歸納,以便在今后的學習中能夠更好地應用正弦定理。歸納總結(10分鐘)老師可以讓學生簡單總結一下今天的課程內容,以便學生更好地理解和掌握正弦定理。可以強調正弦定理的應用場景和方法,并鼓勵學生在今后的學習和生活中多多應用。布置作業(5分鐘)老師可以根據今天的課程內容布置相應的作業,讓學生在家中進行練習和鞏固。同時,也可以讓學生回家后和家長一起討論今天所學的內容,以便更好地加深理解。結束語(5分鐘)老師可以簡單總結一下今天的課程內容,并強調正弦定理在解決實際問題中的重要性和應用價值。同時,也可以鼓勵學生在今后的學習中多多應用正弦定理,提高自己的數學素養和能力。正弦定理說課稿篇三尊敬的各位專家、評委:大家好!我是**縣**中學數學教師fwsi,我今天說課的題目是:人教A版普通高中課程標準實驗教科書數學必修5第一章第一節的第一課時《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。一、教材分析"解三角形"既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課"正弦定理",作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從"實際問題"抽象成"數學問題"的建模過程中,體驗"觀察——猜想——證明——應用"這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和"用數學"的意識。二、學情分析我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對"一些重要的數學思想和數學方法"的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。三、教學目標1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用"等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立"數學與我有關,數學是有用的,我要用數學,我能用數學"的理念。2、教學重點、難點教學重點:正弦定理的發現與證明;正弦定理的簡單應用。教學難點:正弦定理證明及應用。四、教學方法與手段為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用"問題教學法",即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。五、教學過程為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:(一)創設情景,揭示課題問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?1671年兩個法國天文學家首次測出了地月之間的距離大約為385400km,你知道他們當時是怎樣測出這個距離的嗎?問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。(二)特殊入手,發現規律問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA=,sinB=,sinC=,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?引導啟發學生發現特殊情形下的正弦定理(三)類比歸納,嚴格證明問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發引導學生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務必啟發學生用向量法完成證明。)放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發﹝940-998﹞首先發現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在1000年以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。(四)強化理解,簡單應用下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢?我們先小試牛刀,來一個簡單的問題:問題7:(教材例題1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。強化練習讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發現教材8頁得內容:《解三角形的進一步討論》(五)小結歸納,深化拓展1、正弦定理2、正弦定理的證明方法3、正弦定理的應用4、涉及的數學思想和方法。師生共同總結本節課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發展、完善的過程。(六)布置作業,鞏固提高1、教材10頁習題1.1A組第1題。2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB,c=2RsinC對不同水平的學生設計不同梯度的作業,尊重學生的個性差異,有利于因材施教的教學原則的貫徹。(七)板書設計:(略)正弦定理說課稿篇四尊敬的各位專家、評委:大家好!我是xx縣xx中學數學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書數學必修5第一章第一節的第一課時《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。一、教材分析"解三角形"既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課"正弦定理",作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從"實際問題"抽象成"數學問題"的建模過程中,體驗"觀察——猜想——證明——應用"這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和"用數學"的意識。二、學情分析我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對"一些重要的數學思想和數學方法"的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。三、教學目標1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用"等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立"數學與我有關,數學是有用的,我要用數學,我能用數學"的理念。2、教學重點、難點教學重點:正弦定理的發現與證明;正弦定理的簡單應用。教學難點:正弦定理證明及應用。四、教學方法與手段為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用"問題教學法",即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。五、教學過程為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:(一)創設情景,揭示課題問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?1671年兩個法國天文學家首次測出了地月之間的距離大約為385400km,你知道他們當時是怎樣測出這個距離的嗎?問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實并不難,只要你學好本章內容即可掌握其原理。引用教材本章引言,制造知識與問題的'沖突,激發學生學習本章知識的興趣。(二)特殊入手,發現規律問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA=,sinB=,sinC=,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?引導啟發學生發現特殊情形下的正弦定理(三)類比歸納,嚴格證明問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發﹝940—998﹞首先發現與證明的。中亞細亞人阿爾比魯尼﹝973—1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在1000年以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。(四)強化理解,簡單應用下面請大家看我們的教材2—3頁到例題1上邊,并自學解三角形定義。讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢?我們先小試牛刀,來一個簡單的問題:問題7:(教材例題1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。強化練習讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發現教材8頁得內容:《解三角形的進一步討論》(五)小結歸納,深化拓展1、正弦定理。2、正弦定理的證明方法。3、正弦定理的應用。4、涉及的數學思想和方法。師生共同總結本節課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發展、完善的過程。(六)布置作業,鞏固提高1、教材10頁習題1、1A組第1題。2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB,c=2RsinC。對不同水平的學生設計不同梯度的作業,尊重學生的個性差異,有利于因材施教的教學原則的貫徹。正弦定理余弦定理說課稿篇五"余弦定理"是人教a版數學第必修5主要內容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內容的直接延拓,它是三角函數一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數學問題及生產、生活實際問題的重要工具,因此具有廣泛的應用價值。本節課是"正弦定理、余弦定理"教學的第二節課,其主要任務是引入并證明余弦定理,在課型上屬于"定理教學課".這堂課并不是將余弦定理全盤呈現給學生,而是從實際問題的求解困難,造成學生認知上的沖突,從而激發學生探索新知識的強烈欲望。另外,本節與教材其他課文的共性是都要掌握定理內容及證明方法,會解決相關的問題。下面說一說我的教學思路。通過對教材的分析鉆研制定了教學目的:1.掌握余弦定理的內容及證明余弦定理的向量方法,會運用余弦定理解決兩類基本的解三角形問題。2.培養學生在方程思想指導下解三角形問題的運算能力。3.培養學生合情推理探索數學規律的思維能力。4.通過三角函數、余弦定理、向量的數量積等知識的聯系,來理解事物普遍聯系與辯證統一。余弦定理揭示了任意三角形邊角之間的客觀規律,是解三角形的重要工具。余弦定理是初中學習的勾股定理的拓廣,也是前階段學習的三角函數知識與平面向量知識在三角形中的交匯應用。本節課的重點內容是余弦定理的發現和證明過程及基本應用,其中發現余弦定理的過程是檢驗和訓練學生思維品質的重要素材。余弦定理是勾股定理的推廣形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的發現和證明過程中,起到奠基作用,因此分析勾股定理的結構特征是突破發現余弦定理這個難點的關鍵。在確定教學方法之前,首先分析一下學生:我所教的是課改一年級的學生。他們的基礎比正常高中的學生要差許多,拿其中一班學生來說:數學入學成績及格的占50%左右,相對來說教材難度較大,要求教師吃透教材,選擇恰當的教學方法和教學手段把知識傳授給學生。根據教材和學生實際,本節主要采用"啟發式教學"、"講授法"、"演示法",并采用電教手段使用多媒體輔助教學。1.啟發式教學:利用一個工程問題創設情景,啟發學生對問題進行思考。在研究過程中,激發學生探索新知識的強烈欲望。2.練習法:通過練習題的訓練,讓學生從多角度對所學定理進行認識,反復的練習,體現學生的主體作用。3.講授法:充分發揮主導作用,引導學生學習。4.演示法:利用動畫、圖片,激發學生的學習興趣,調動學生積極性。這節課準備的器材有:計算機、大屏幕。1.復習正弦定理(2分鐘):安排一名同學上黑板寫正弦定理。2.設計精彩的新課導入(5分鐘):利用大屏幕演示一座山,先展示,后出現b、c,再連成虛線,并閃動幾下,閃動邊ab、ac幾下,再閃動角a的陰影幾下,可測得ac、ab的長及∠a大小。問你知道工程技術人員是怎樣計算出來的嗎?一下子,學生的注意力全被調動起來,學生一定會采用正弦定理,但很快發現∠b、∠c不能確定,陷入困境當中。3.探索研究,合理猜想。當ab=c,ac=b一定,∠a變化時,a可以認為是a的函數,a=f(a),a∈(0,∏)比較三種情況,學生會很快找到其中規律。-2ab的系數-1、0、1與a=0、∏/2、∏之間存在對應關系。教師指導學生由特殊到一般,經比較分析特例,概括出余弦定理,這種促使學生主動參與知識形成過程的教學方法,既符合學生學習的認知規律,又突出了學生的主體地位。"授人以魚",不如"授人以漁",引導學生發現問題,探究知識,建構知識,對學生來說,既是對數學研究活動的一種體驗,又是掌握一種終身受用的治學方法。4.證明猜想,建構新知接下來就是水到渠成,現在余弦定理還需要進一步證明,要符合數學的嚴密邏輯推理,鍛煉學生自己寫出定理證明的已知條件和結論,請一位學生到黑板寫出來,并請同學們自己進行證明。教師在課中進行指導,針對出現的問題,結合大屏幕打出的正確過程進行講解。在大屏幕打出余弦定理,為了促進學生記憶,在黑板上讓學生背著寫出定理,也是當堂鞏固定理的方法。5.操作演練,鞏固提高定理的應用是本節的重點之一。我分析題目,請同學們進行解答,在難點處進行點撥。以第二題為例,在求a的過程中學生會產生分歧,一部分采用正弦定理,一部分采用余弦定理,其實兩種做法都可得到正確答案,形成解法一和解法二。在這道例題中進行發散思維的訓練,(在上例中,能否既不使用余弦定理,也不使用正弦定理,求出∠a?)啟發一:a視為b與c兩點間的距離,利用b、c的坐標構造含a的等式啟發二:利用平移,用兩種方法求出c’點的坐標,構造等式。使學生的思維活躍,漸入新的境界。每次啟發,或是針對一般原則的提示,或是在學生出現思維盲點處點撥,或是學生"簡單一跳未摘到果子"時的及時提醒。6.課堂小結:告訴學生余弦定理是任何三角形邊角之間存在的共同規律,勾股定理是余弦定理的特例。7.布置作業:書面作業3道題作業中注重余弦定理的應用,重點培養解決問題的能力。以上是我的一點粗淺的認識,如有不對之處,請老師評委們給與指教,我的課說完了,謝謝各位。正弦定理余弦定理說課稿篇六1.地位及作用"余弦定理"是人教a版數學必修5主要內容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內容的直接延拓,它是三角函數一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數學問題及生產、生活實際問題的重要工具具有廣泛的應用價值,起到承上啟下的作用。2.教學重、難點重點:余弦定理的證明過程和定理的簡單應用。難點:利用向量的數量積證余弦定理的思路。知識目標:能推導余弦定理及其推論,能運用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類三角形。能力目標:培養學生知識的遷移能力;歸納總結的能力;運用所學知識解決實際問題的能力。情感目標:從實際問題出發運用數學知識解決問題這個過程體驗數學在實際生活中的運用,激發學生學習數學的興趣。通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。數學課堂上首先要重視知識的發生過程,既能展現知識的獲取,又能暴露解決問題的思維。在本節教學中,我將遵循"提出問題、分析問題、解決問題"的步驟逐步推進,以課堂教學的組織者、引導者、合作者的身份,組織學生探究、歸納、推導,引導學生逐個突破難點,師生共同解決問題,使學生在各種數學活動中掌握各種數學基本技能,初步學會從數學角度去觀察事物和思考問題,產生學習數學的愿望和興趣。本節教學中通過創設情境,充分調動學生已有的學習經驗,讓學生經歷"現實問題轉化為數學問題"的過程,發現新的知識,把學生的潛意識狀態的好奇心變為自覺求知的創新意識。又通過實際操作,使剛產生的數學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質。幫助學生從平面幾何、三角函數、向量知識等方面進行分析討論,選擇簡潔的處理工具,引發學生的積極討論。你能夠有更好的具體的量化方法嗎?問題可轉化為已知三角形兩邊長和夾角求第三邊的問題,即:在中已知ac=b,ab=c和a,求a.學生對向量知識可能遺忘,注意復習;在利用數量積時,角度可能出現錯誤,出現不同的表示形式,讓學生從錯誤中發現問題,鞏固向量知識,明確向量工具的作用。同時,讓學生明確數學中的轉化思想:化未知為已知。將實際問題轉化成數學問題,引導學生分析問題。在中已知a=5,b=7,c=8,求b.學生思考或者討論,若有同學答則順勢引出推論,若不能作答則由老師引導推出推論,然后返回解決該問題。讓學生觀察推論的特征,討論該推論有什么用。正弦定理說課稿篇七一、教材分析1、教材地位和作用在初中,學生已經學習了三角形的邊和角的基本關系;同時在必修4,學生也學習了三角函數、平面向量等內容。這些為學生學習正弦定理提供了堅實的基礎。正弦定理是初中解直角三角形的延伸,是揭示三角形邊、角之間數量關系的重要公式,本節內容同時又是學生學習解三角形,幾何計算等后續知識的基礎,而且在物理學等其它學科、工業生產以及日常生活等常常涉及解三角形的問題。依據教材的上述地位和作用,我確定如下教學目標和重難點。2、教學目標(1)知識目標:①引導學生發現正弦定理的內容,探索證明正弦定理的方法;②簡單運用正弦定理解三角形、初步解決某些與測量和幾何計算有關的實際問題。(2)能力目標:①通過對直角三角形邊角數量關系的研究,發現正弦定理,體驗用特殊到一般的思想方法發現數學規律的過程。②在利用正弦定理來解三角形的過程中,逐步培養應用數學知識來解決社會實際問題的能力。(3)情感目標:通過設立問題情境,激發學生的學習動機和好奇心理,使其主動參與雙邊交流活動。通過對問題的提出、思考、解決培養學生自信、自立的優良心理品質。通過教師對例題的講解培養學生良好的學習習慣及科學的學習態度。3、教學的重﹑難點教學重點:正弦定理的內容,正弦定理的證明及基本應用;教學難點:正弦定理的探索及證明;教學中為了達到上述目標,突破上述重難點,我將采用如下的教學方法與手段。二、教學方法與手段1、教學方法教學過程中以教師為主導,學生為主體,創設和諧、愉悅教學環境。根據本節課內容和學生認知水平,我主要采用啟導法、感性體驗法、多媒體輔助教學。2、學法指導學情調動:學生在初中已獲得了直角三角形邊角關系的初步知識,正因如此學生在心理上會提出如何解決斜三角形邊角關系的疑問。學法指導:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,讓學生在問題情景中學習,再通過對實例進行具體分析,進而觀察歸納、演練鞏固,由具體到抽象,逐步實現對新知識的理解深化。3、教學手段利用多媒體展示圖片,極大的吸引學生的注意力,活躍課堂氣氛,調動學生參與解決問題的積極性。為了提高課堂效率,便于學生動手練習,我把本節課的例題、課堂練習制作成一張習題紙,課前發給學生。下面我講解如何運用上述教學方法和手段開展教學過程三、總結分析:現代教育心理學的研究認為,有效的性質概念教學是建立在學生已有知識結構基礎上的,因此我在教學設計過程中注意了:㈠在學生已有知識結構和新性質概念間尋找“最近發展區”.㈡引導學生通過同化,順應掌握新概念。㈢設法走出“性質概念一帶而過,演習作業鋪天蓋地”的誤區,促使自己與學生一起走進“重視探究、重視交流、重視過程”的新天地。我認為本節課的設計應遵循教學的基本原則;注重對學生思維的發展;貫徹教師對本節內容的理解;體現“學思結合﹑學用結合”原則。希望對學生的思維品質的培養﹑數學思想的建立﹑心理品質的優化起到良好的作用。設計意圖:我的板書設計的指導原則:簡明直觀,重點突出。本節課的板書教學重點放在黑板的正中間,為了能加深學生對正弦定理以及其應用的認識,把例題放在中間,以期全班同學都能看得到。謝謝!《正弦定理》的說課稿篇八一、說教材分析1、教材地位和作用在初中,學生已經學習了三角形的邊和角的基本關系;同時在必修4,學生也學習了三角函數、平面向量等內容。這些為學生學習正弦定理提供了堅實的基礎。正弦定理是初中解直角三角形的延伸,是揭示三角形邊、角之間數量關系的重要公式,本節內容同時又是學生學習解三角形,幾何計算等后續知識的基礎,而且在物理學等其它學科、工業生產以及日常生活等常常涉及解三角形的問題。依據教材的上述地位和作用,我確定如下教學目標和重難點2、教學目標(1)知識目
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市管理車輛管理制度
- 安全檢查閉環管理制度
- 行政組織理論的政策分析框架試題及答案
- 醫院處方審查管理制度
- 公司燒水鍋爐管理制度
- 醫藥推廣人員管理制度
- 公司日常基本管理制度
- 公路工程風險管控制度試題及答案
- 少年太極社團管理制度
- 嵌入式技術在農業中的創新應用試題及答案
- 水產養殖網箱租賃與飼料供應合作協議
- TCERDS5-2023企業ESG管理體系
- 2025年全國保密教育線上培訓考試試題庫含答案(新)附答案詳解
- 江蘇省南京市2025年高三第四次模擬考試英語試卷含答案
- 鋼結構施工 課件項目3 鋼結構工程安裝
- 《神經網絡模型》課件
- 四川省成都外國語2025年高三聯考數學試題科試題含解析
- 后現代思潮與教育
- 四川省樹德中學2025年高三第一次模擬考試(物理試題含解析)
- 2025年科技節活動小學科普知識競賽題庫及答案(共80題)
- 售電合同協議
評論
0/150
提交評論