




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
專題2.13直線與圓的位置關系重難點題型精講1.直線與圓的位置關系及判定方法(1)直線與圓的位置關系及方程組的情況如下:(2)直線與圓的位置關系的判定方法
①代數法:通過聯立直線方程與圓的方程組成方程組,根據方程組解的個數來研究,若有兩組不同的實數解,即>0,則直線與圓相交;若有兩組相同的實數解,即=0,則直線與圓相切;若無實數解,即<0,則直線與圓相離.
②幾何法:由圓心到直線的距離d與半徑r的大小來判斷,當d<r時,直線與圓相交;當d=r時,直線與圓相切;當d>r時,直線與圓相離.2.圓的切線及切線方程(1)自一點引圓的切線的條數:
①若點在圓外,則過此點可以作圓的兩條切線;
②若點在圓上,則過此點只能作圓的一條切線,且此點是切點;
③若點在圓內,則過此點不能作圓的切線.
(2)求過圓上的一點的圓的切線方程:
①求法:先求切點與圓心連線的斜率k(),則由垂直關系可知切線斜率為,由點斜式方程可求得切線方程.如果k=0或k不存在,則由圖形可直接得切線方程.
②重要結論:
a.經過圓上一點P的切線方程為.
b.經過圓上一點P的切線方程為.
c.經過圓+Dx+Ey+F=0上一點P的切線方程為.3.圓的弦長問題設直線l的方程為y=kx+b,圓C的方程為,求弦長的方法有以下幾種:
(1)幾何法
如圖所示,半徑r、圓心到直線的距離d、弦長l三者具有關系式:.(2)代數法
將直線方程與圓的方程組成方程組,設交點坐標分別為A,B.
①若交點坐標簡單易求,則直接利用兩點間的距離公式進行求解.
②若交點坐標無法簡單求出,則將方程組消元后得一元二次方程,由一元二次方程中根與系數的關系可得或的關系式,通常把或叫作弦長公式.4.解與圓有關的最值問題(1)利用圓的幾何性質求最值的問題
求圓上點到直線的最大值、最小值,需過圓心向直線作垂線.
①如圖2514①,當直線l與圓C相交時,最小距離為0,最大距離為AD=r+d.其中r為圓的半徑,d為圓心到直線的距離;
②如圖2514②,當直線l與圓C相切時,最小距離為0,最大距離為AD=2r;
③如圖2514③,當直線l與圓C相離時,最小距離為BD=dr,最大距離為AD=d+r.(2)利用直線與圓的位置關系解決最值(取值范圍)問題
解析幾何中的最值問題一般是根據條件列出所求目標——函數關系式,然后根據函數關系式的特征選用參數法、配方法、判別式法等,應用不等式求出其最值(取值范圍).對于圓的最值問題,要利用圓的特殊幾何性質,根據式子的幾何意義求解,這常常是簡化運算的最佳途徑.
①形如u=的最值問題,可轉化為動直線斜率的最值問題.②形如t=ax+by的最值問題,可轉化為動直線截距的最值問題.
③形如的最值問題,可轉化為動點到定點的距離的平方的最值問題.
(3)經過圓內一點的最長弦就是經過這點的直徑,過這點和最長弦垂直的弦就是最短弦.5.直線與圓的方程的應用(1)解決實際問題的步驟:
(2)建系原則
建立適當的平面直角坐標系要把握兩個原則:
①對稱性原則.可以選擇對稱中心為坐標原點,對稱軸所在的直線為坐標軸.到兩個定點的距離問題,可以選擇兩個定點所在的直線以及線段的垂直平分線為坐標軸等.有兩條相互垂直的直線的問題則可選其為坐標軸.
②集中性原則.可以讓曲線上盡可能多的特殊點在坐標軸上.如與三角形有關的問題,可以考慮將三角形的三個頂點全部放在坐標軸上.【題型1直線與圓的位置關系及判定】【方法點撥】①代數法:通過聯立直線方程與圓的方程組成方程組,根據方程組解的個數來研究,若有兩組不同的實數解,即>0,則直線與圓相交;若有兩組相同的實數解,即=0,則直線與圓相切;若無實數解,即<0,則直線與圓相離.②幾何法:由圓心到直線的距離d與半徑r的大小來判斷,當d<r時,直線與圓相交;當d=r時,直線與圓相切;當d>r時,直線與圓相離.【例1】(2022·江西省高一階段練習(理))直線mx2ym+1=0與圓x2+y24x2y+1=0的位置關系是(
)A.相交 B.相切 C.相離 D.不確定【變式11】(2022·河南·高二階段練習)對于任意實數k,圓C:x2+y2A.相交 B.相切C.相離 D.與k的取值有關【變式12】(2022·全國·高二課時練習)已知直線l:x?y+2=0與圓C:x2+y2A.?∞,0 C.?∞,?1【變式13】(2022·全國·高二課時練習)已知點Ma,bab≠0在圓x2+y2=r2內,直線mA.l//m且與圓相離 B.C.l//m且與圓相交 D.【題型2圓的切線問題及切線方程的求解】【方法點撥】①當一條直線l與圓C相切時,毫無疑問地要用到圓心C到直線l的距離d=r(r為圓C的半徑).②當一條直線l與圓C相切于點P時,則lPC.③過圓外一點P向圓C作切線,切點為Q,則必定會用到.【例2】(2022·全國·高三專題練習)過點M(3,1)作圓x2+y2?2x?6y+2=0的切線lA.x+y?4=0 B.x+y?4=0或x=3C.x?y?2=0 D.x+y?2=0或x=3【變式21】(2021·山西大同·高三階段練習(文))已知圓心在x軸上,半徑為22的圓上有一點M1,2,則圓在點M處的切線方程是(A.x?y+1=0 B.2x?y=0或x+y?3=0C.x+y?3=0 D.x?y+1=0或x+y?3=0【變式22】(2022·安徽蚌埠·一模)過直線x+y=5上的點作圓C:x2+A.32 B.23 C.15 【變式23】(2023·全國·高三專題練習)在平面直角坐標系xOy中,已知圓C:x2+y?32=2,點A是x軸上的一個動點,AP,AQ分別切圓C于PA.273,22 B.2143【題型3圓的弦長問題】【方法點撥】當直線與圓相交時,因幾何法求弦長較方便,一般不用代數法.用幾何法求解圓的弦長的一般步驟:第一步:確定圓的半徑r;第二步:求解圓心到直線的距離d;第三步:代入公式求解弦長.【例3】(2022·全國·高二課時練習)直線l:3x+4y?1=0被圓C:x2+A.25 B.4 C.23 【變式31】(2022·全國·高三專題練習)過點A2,2,作傾斜角為π3的直線l,則直線l被圓O:xA.1?32 B.2?3 C.3?【變式32】(2023·全國·高三專題練習)已知直線l:mx?y?3m+1=0恒過點P,過點P作直線與圓C:(x?1)2+(y?2)2=25相交于A,BA.45 B.2 C.4 D.【變式33】(2023·全國·高三專題練習)已知圓O:?x2+y2=10,已知直線l:?ax+by=2a?ba,b∈R與圓O的交點分別M,N,當直線A.352 B.552 C.【題型4直線與圓有關的最值問題】【方法點撥】解直線與圓的最值問題主要有以下兩種思路:①代數法:利用平面幾何中的有關公式,構造函數,把問題轉化為函數的最值,然后根據函數最值的求法進行求解.在轉化過程中常用到向量的數量積、一元二次方程根與系數的關系、換元等知識和方法.②幾何法:找到所求式的幾何意義,在坐標系中與圓建立聯系,分析其與圓的位置變化情況,找到最大、最小取值點.【例4】(2023·全國·高三專題練習)已知圓C:x2+y2?4x?2y+1=0,點P是直線y=4上的動點,過P作圓的兩條切線,切點分別為A,BA.253 B.453 C.【變式41】(2022·全國·高三專題練習)瑞士著名數學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上.這條直線被后人稱為三角形的“歐拉線”.在平面直角坐標系中作△ABC,AB=AC,點B(?1,1),點C(3,5),過其“歐拉線”上一點Р作圓O:x2+y2=4的兩條切線,切點分別為M,NA.2 B.22 C.3 D.【變式42】(2022·江蘇·高二專題練習)已知點Q在圓M:x+32+y?32=4上,直線l:2x?3y+6=0與x軸、y軸分別交于點①點Q到直線l的距離小于4.5②點Q到直線l的距離大于1③當∠QRP最小時,RQ④當∠QRP最大時,RQA.1個 B.2個 C.3個 D.4個【變式43】(2021·湖北·高二期中)已知圓C1:(x?2)2+(y+3)2=1,圓C2:(x?3)2+(y?4)2=9,A.52+4 C.52 D.【題型5直線與部分圓的相交問題】【方法點撥】一條直線和一個圓的一部分有交點時,如果用代數法去研究,則要轉化為一元二次方程根的取值情況,過程比較繁瑣,因此這類問題一般采用數形結合的方法去研究,研究應抓住兩類直線:一是切線;二是過端點的直線.【例5】(2022·湖南·高二階段練習)若直線l:kx?y?2=0與曲線C:1?y?12=x?1有兩個交點,則實數A.43,2 C.?2,43∪【變式51】(2021·山東泰安·高二期中)設點P(x,y)是曲線y=?4?(x?1)2上的任意一點,則y?2A.[0,125] B.[25,【變式52】(2021·天津高二階段練習)設曲線x=1?(1?y)2上的點到直線x?y?2=0的距離的最大值為a,最小值為b,則a?bA.2 B.2?22 C.2 【變式53】(2021·山東·高二階段練習)過點2,?1引直線l與曲線y=1?x2相交于A?B兩點,則直線lA.?1,?34 B.?43,?1 【題型6直線與圓的方程的應用】【方法點撥】用坐標法解決幾何問題時應注意以下幾點:①應在利于解題的原則下建立適當的平面直角坐標系,不可隨便建立;②在實際問題中,有些量具有一定的限制條件,轉化成代數問題時要注意取值范圍;③最后一定要將代數結果轉化成幾何結論.【例6】(2022·全國·高二課時練習)如圖,某海面上有O,A,B三個小島(面積大小忽略不計),A島在O島的北偏東45°方向距O島402千米處,B島在O島的正東方向距O島20千米處.以O為坐標原點,O的正東方向為x軸的正方向,1千米為一個單位長度,建立平面直角坐標系.圓C經過O,A,B(1)求圓C的方程;(2)若圓C區域內有未知暗礁,現有一船D在O島的南偏西30°方向距O島40千米處,正沿著北偏東45°方向行駛,若不改變方向,試問該船有沒有觸礁的危險?【變式61】(2022·湖北·高二期末)為了保證我國東海油氣田海域海上平臺的生產安全,海事部門在某平臺O的北偏西45°方向22km處設立觀測點A,在平臺O的正東方向12km處設立觀測點B,規定經過O、A、B三點的圓以及其內部區域為安全預警區.如圖所示:以O為坐標原點,O的正東方向為x(1)試寫出A,B的坐標,并求兩個觀測點A,B之間的距離;(2)某日經觀測發現,在該平臺O正南10kmC處,有一艘輪船正以每小時87【變式62】(2022·浙江·高二期末)如圖,一個湖的邊界是圓心為O的圓,湖的一側有一條直線型公路l,湖上有橋AB(AB是圓O的直徑).規劃在公路l上選兩個點P?Q,并修建兩段直線型道路PB?QA.規劃要求,線段PB?QA上的所有點到點O的距離均不小于圓O的半徑.已知點A,B到直線l的距離分別為AC和BD(C,D為垂足),測得AB=10,AC=6,BD=12(單位:百米).(1)若道路PB與橋AB垂直,求道路PB的長;(2)在規劃要求下,點Q能否選在D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年英語教師學期工作總結模版
- 放學后班級管理
- 軟件培訓課件制作規范
- 湖北省恩施州鶴峰縣2025屆七年級數學第二學期期末檢測模擬試題含解析
- 2025屆湖北省武漢市新觀察八年級數學第二學期期末監測模擬試題含解析
- 大學生職業規劃大賽《建筑電氣與智能化專業》生涯發展展示
- 大學生職業規劃大賽《新能源材料與器件專業》生涯發展展示
- 動態護理查房
- 小兒常見急癥護理
- 公司培訓系統構建與實施
- 2025年新音樂節明星藝人歌手演出場費報價單
- (一模)青島市2025年高三年級第一次適應性檢測英語試卷(含標準答案)+聽力材料
- 70歲老年人三力測試能力考試題庫附答案
- 交通中國知到智慧樹章節測試課后答案2024年秋上海工程技術大學
- 2025年《中央一號文件》參考試題庫資料100題及答案(含單選、多選、判斷題)
- GB/T 28185-2025城鎮供熱用換熱機組
- 川教版(2019)小學信息技術四年級下冊 第二單元第3節《圖文并茂》教學設計及反思
- 烹飪原料知識試題庫(附參考答案)
- 主動剎車防撞系統說課
- 2025年國家電網陜西省電力公司招聘筆試參考題庫含答案解析
- 技術支持與服務保障措施
評論
0/150
提交評論