




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省鄂州市鄂城區2024屆中考數學猜題卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點A所表示的數的絕對值是()A.3 B.﹣3 C. D.2.如圖所示,二次函數y=ax2+bx+c(a≠0)的圖象經過點(﹣1,2),且與x軸交點的橫坐標分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結論有()A.1個 B.2個 C.3個 D.4個3.如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤4.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小正方體的個數,則該幾何體的左視圖是()A. B.C. D.5.如果一次函數y=kx+b(k、b是常數,k≠0)的圖象經過第一、二、四象限,那么k、b應滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<06.如圖所示,的頂點是正方形網格的格點,則的值為()A. B. C. D.7.將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-28.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.9.如圖,⊙O的半徑為1,△ABC是⊙O的內接三角形,連接OB、OC,若∠BAC與∠BOC互補,則弦BC的長為()A. B.2 C.3 D.1.510.若二元一次方程組的解為則的值為()A.1 B.3 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,一組平行橫格線,其相鄰橫格線間的距離都相等,已知點A、B、C、D、O都在橫格線上,且線段AD,BC交于點O,則AB:CD等于______.12.點(1,–2)關于坐標原點O的對稱點坐標是_____.13.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F點,則下列結論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設AB=a,MN=b,則≥1﹣1.14.有四張質地、大小、反面完全相同的不透明卡片,正面分別寫著數字1,2,3,4,現把它們的正面向下,隨機擺放在桌面上,從中任意抽出一張,則抽出的數字是奇數的概率是.15.在平面直角坐標系中,智多星做走棋的游戲,其走法是:棋子從原點出發,第1步向上走1個單位,第2步向上走2個單位,第3步向右走1個單位,第4步向上走1個單位……依此類推,第n步的走法是:當n被3除,余數為2時,則向上走2個單位;當走完第2018步時,棋子所處位置的坐標是_____16.三角形的每條邊的長都是方程的根,則三角形的周長是.17.因式分解:x2y-4y3=________.三、解答題(共7小題,滿分69分)18.(10分)博鰲亞洲論壇2018年年會于4月8日在海南博鰲拉開帷幕,組委會在會議中心的墻壁上懸掛會旗,已知矩形DCFE的兩邊DE,DC長分別為1.6m,1.2m.旗桿DB的長度為2m,DB與墻面AB的夾角∠DBG為35°.當會旗展開時,如圖所示,(1)求DF的長;(2)求點E到墻壁AB所在直線的距離.(結果精確到0.1m.參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(5分)某景區商店銷售一種紀念品,每件的進貨價為40元.經市場調研,當該紀念品每件的銷售價為50元時,每天可銷售200件;當每件的銷售價每增加1元,每天的銷售數量將減少10件.當每件的銷售價為52元時,該紀念品每天的銷售數量為件;當每件的銷售價x為多少時,銷售該紀念品每天獲得的利潤y最大?并求出最大利潤.20.(8分)武漢市某中學的一個數學興趣小組在本校學生中開展主題為“垃圾分類知多少”的專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷詞查的結果分為“非常了解“、“比較了解”、“只聽說過”,“不了解”四個等級,劃分等級后的數據整理如下表:等級非常了解比較了解只聽說過不了解頻數40120364頻率0.2m0.180.02(1)本次問卷調查取樣的樣本容量為,表中的m值為;(2)在扇形圖中完善數據,寫出等級及其百分比;根據表中的數據計算等級為“非常了解”的頻數在扇形統計圖所對應的扇形的圓心角的度數;(3)若該校有學生1500人,請根據調查結果估計這些學生中“比較了解”垃圾分類知識的人數約為多少?21.(10分)如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.填空:______;證明:;當四邊形ABCD的面積和的面積相等時,求點P的坐標.22.(10分)2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經貿合作協議,某廠準備生產甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區.已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.(1)甲種商品與乙種商品的銷售單價各多少元?(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?23.(12分)全民學習、終身學習是學習型社會的核心內容,努力建設學習型家庭也是一個重要組成部分.為了解“學習型家庭”情況,對部分家庭五月份的平均每天看書學習時間進行了一次抽樣調查,并根據收集的數據繪制了下面兩幅不完整的統計圖,請根據圖中提供的信息,解答下列問題:本次抽樣調查了個家庭;將圖①中的條形圖補充完整;學習時間在2~2.5小時的部分對應的扇形圓心角的度數是度;若該社區有家庭有3000個,請你估計該社區學習時間不少于1小時的約有多少個家庭?24.(14分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F是AE與⊙O的交點,AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據負數的絕對值是其相反數解答即可.【詳解】|-3|=3,故選A.【點睛】此題考查絕對值問題,關鍵是根據負數的絕對值是其相反數解答.2、C【解析】
首先根據拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據這些條件以及函數圖象上一些特殊點的坐標來進行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;①由圖可得:當x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對稱軸位于y軸的左側,則a、b同號,又c>0,故abc>0,所以③不正確;④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點縱坐標應該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結論是①②④.故選:C.【點睛】本題主要考查對二次函數圖象與系數的關系,拋物線與x軸的交點,二次函數圖象上點的坐標特征等知識點的理解和掌握,能根據圖象確定與系數有關的式子的正負是解此題的關鍵.3、D【解析】
根據正方形的性質可得AB=BC=AD,∠ABC=∠BAD=90°,再根據中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據鄰補角的定義可得∠AME=90°,從而判斷①正確;根據中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據直角三角形的性質判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據正方形的性質求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據正方形的性質,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質,全等三角形的判定與性質,相似三角形的判定與性質,勾股定理的應用,勾股定理逆定理的應用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構造出直角三角形與相似三角形是解題的關鍵.4、D【解析】根據俯視圖中每列正方形的個數,再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:
.故選D.5、B【解析】試題分析:∵一次函數y=kx+b(k、b是常數,k≠0)的圖象經過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數的性質和圖象6、B【解析】
連接CD,求出CD⊥AB,根據勾股定理求出AC,在Rt△ADC中,根據銳角三角函數定義求出即可.【詳解】解:連接CD(如圖所示),設小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.【點睛】本題考查了勾股定理,銳角三角形函數的定義,等腰三角形的性質,直角三角形的判定的應用,關鍵是構造直角三角形.7、A【解析】試題分析:根據函數圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是y=(x﹣1)2+2,故選A.考點:二次函數圖象與幾何變換.8、A【解析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質以及反比例函數圖象上點的坐標特征,熟知反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關鍵.9、A【解析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數、垂徑定理等知識,解題的關鍵是學會添加常用輔助線.10、D【解析】
先解方程組求出,再將代入式中,可得解.【詳解】解:,得,所以,因為所以.故選D.【點睛】本題考查二元一次方程組的解,解題的關鍵是觀察兩方程的系數,從而求出a-b的值,本題屬于基礎題型.二、填空題(共7小題,每小題3分,滿分21分)11、2:1.【解析】
過點O作OE⊥AB于點E,延長EO交CD于點F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根據相似三角形對應高的比等于相似比可得,由此即可求得答案.【詳解】如圖,過點O作OE⊥AB于點E,延長EO交CD于點F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,練習本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,∴=,故答案為:2:1.【點睛】本題考查了相似三角形的的判定與性質,熟練掌握相似三角形對應高的比等于相似比是解本題的關鍵.12、(-1,2)【解析】
根據兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】A(1,-2)關于原點O的對稱點的坐標是(-1,2),
故答案為:(-1,2).【點睛】此題主要考查了關于原點對稱的點的坐標,關鍵是掌握點的坐標的變化規律.13、①②③④⑤⑥⑦.【解析】
將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據全等三角形的性質判斷②④;將△ADF繞點A順時針性質90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據勾股定理計算判斷③;根據等腰直角三角形的判定定理判斷⑤;根據等腰直角三角形的性質、三角形的面積公式計算,判斷⑥,根據點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當且僅當BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結論正確;如圖1,將△ADF繞點A順時針性質90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點睛】此題是四邊形綜合題,主要考查了正方形的性質,全等三角形的判定和性質,等腰直角三角形的判定和性質,解本題的關鍵是構造全等三角形.14、【解析】試題分析:這四個數中,奇數為1和3,則P(抽出的數字是奇數)=2÷4=.考點:概率的計算.15、(672,2019)【解析】分析:按照題目給定的規則,找到周期,由題意可得每三步是一個循環,所以只需要計算2018被3除,就可以得到棋子的位置.詳解:解:由題意得,每3步為一個循環組依次循環,且一個循環組內向右1個單位,向上3個單位,∵2018÷3=672…2,∴走完第2018步,為第673個循環組的第2步,所處位置的橫坐標為672,縱坐標為672×3+3=2019,∴棋子所處位置的坐標是(672,2019).故答案為:(672,2019).點睛:周期問題解決問題的核心是要找到最小正周期,然后把給定的數(一般是一個很大的數)除以最小正周期,余數是幾,就是第幾步,特別余數是1,就是第一步,余數是0,就是最后一步.16、6或2或12【解析】
首先用因式分解法求得方程的根,再根據三角形的每條邊的長都是方程的根,進行分情況計算.【詳解】由方程,得=2或1.當三角形的三邊是2,2,2時,則周長是6;當三角形的三邊是1,1,1時,則周長是12;當三角形的三邊長是2,2,1時,2+2=1,不符合三角形的三邊關系,應舍去;當三角形的三邊是1,1,2時,則三角形的周長是1+1+2=2.綜上所述此三角形的周長是6或12或2.17、y(x++2y)(x-2y)【解析】
首先提公因式,再利用平方差進行分解即可.【詳解】原式.故答案是:y(x+2y)(x-2y).【點睛】考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法分解.三、解答題(共7小題,滿分69分)18、(1)1m.(1)1.5m.【解析】
(1)由題意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【詳解】解:(1)在Rt△DEF中,由題意知ED=1.6m,BD=1m,DF==1.答:DF長為1m.(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1?sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6?cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E點離墻面AB的最遠距離為1.5m.【點睛】本題主要考查三角函數的知識,牢記公式并靈活運用是解題的關鍵。19、(1)180;(2)每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.【解析】分析:(1)根據“當每件的銷售價每增加1元,每天的銷售數量將減少10件”,即可解答;(2)根據等量關系“利潤=(售價﹣進價)×銷量”列出函數關系式,根據二次函數的性質,即可解答.詳解:(1)由題意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案為180;(2)由題意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.點睛:此題主要考查了二次函數的應用,根據已知得出二次函數的最值是中考中考查重點,同學們應重點掌握.20、(1)200;0.6(2)非常了解20%,比較了解60%;72°;(3)900人【解析】
(1)根據非常了解的頻數與頻率即可求出本次問卷調查取樣的樣本容量,用1減去各等級的頻率即可得到m值;(2)根據非常了解的頻率、比較了解的頻率即可求出其百分比,與非常了解的圓心角度數;(3)用全校人數乘以非常了解的頻率即可.【詳解】解:(1)本次問卷調查取樣的樣本容量為40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比較了解60%;非常了解的圓心角度數:360°×20%=72°(3)1500×60%=900(人)答:“比較了解”垃圾分類知識的人數約為900人.【點睛】此題主要考查扇形統計圖的應用,解題的關鍵是根據頻數與頻率求出調查樣本的容量.21、(1)1;(2)證明見解析;(1)點坐標為.【解析】
由點B的坐標,利用反比例函數圖象上點的坐標特征可求出k值;設A點坐標為,則D點坐標為,P點坐標為,C點坐標為,進而可得出PB,PC,PA,PD的長度,由四條線段的長度可得出,結合可得出∽,由相似三角形的性質可得出,再利用“同位角相等,兩直線平行”可證出;由四邊形ABCD的面積和的面積相等可得出,利用三角形的面積公式可得出關于a的方程,解之取其負值,再將其代入P點的坐標中即可求出結論.【詳解】解:點在反比例函數的圖象,.故答案為:1.證明:反比例函數解析式為,設A點坐標為軸于點C,軸于點D,點坐標為,P點坐標為,C點坐標為,,,,,,,.又,∽,,.解:四邊形ABCD的面積和的面積相等,,,整理得:,解得:,舍去,點坐標為.【點睛】本題考查了反比例函數圖象上點的坐標特征、相似三角形的判定與性質、平行線的判定以及三角形的面積,解題關鍵是:根據點的坐標,利用反比例函數圖象上點的坐標特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面積公式,找出關于a的方程.22、(1)甲種商品的銷售單價900元,乙種商品的銷售單價600元;(1)至少銷售甲種商品1萬件.【解析】
(1)可設甲種商品的銷售單價x元,乙種商品的銷售單價y元,根據等量關系:①1件甲種商品與3件乙種商品的銷售收入相同,②3件甲種商品比1件乙種商品的銷售收入多1500元,列出方程組求解即可;(1)可設銷售甲種商品a萬件,根據甲、乙兩種商品的銷售總收入不低于5400萬元,列出不等式求解即可.【詳解】(1)設甲種商品的銷售單價x元,乙種商品的銷售單價y元,依題意有:,解得.答:甲種商品的銷售單價900元,乙種商品的銷售單價600元;(1)設銷售甲種商品a萬件,依題意有:900a+60
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于健康理念的2025年嬰幼兒配方食品營養配方優化研究
- 軟件設計師考試創新方法試題及答案
- 2025年休閑食品健康化轉型與市場拓展的渠道拓展策略研究
- 軟件設計師考試在職業生涯中的定位與發展試題及答案
- 公共政策與環境經濟學試題及答案
- 西方政治中的社會運動與抗議潮分析試題及答案
- 機電工程知識產權保護試題及答案
- 2025年數字圖書館建設與文化科技融合創新模式研究報告
- 機電工程團隊合作精神測評及試題及答案
- 軟件設計師考試考前心態調整技巧試題及答案
- 講解員筆試試題及答案
- 學校校園膳食監督家長委員會履職承諾協議書
- 大竹縣竹中中考數學試卷
- 2024年山東省新高考地理試卷(含答案)
- 麻醉期間反流誤吸的預防與處理
- 結構膠灌注施工方案
- 《中醫體重管理臨床指南》
- 銀行業務專家競聘述職模板
- 電子商務案例分析
- 外研版九年級上冊英語Module 1 Wonders of the world大單元教學設計
- 2024年度影視劇本購買合同:制片公司與編劇之間關于劇本購買的協議3篇
評論
0/150
提交評論