




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆河南省滑縣重點達標名校中考數學最后一模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,C,B是線段AD上的兩點,若,,則AC與CD的關系為()A. B. C. D.不能確定2.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)23.下列運算正確的是(
)A.a2·a3﹦a6
B.a3+a3﹦a6
C.|-a2|﹦a2
D.(-a2)3﹦a64.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°5.2017年北京市在經濟發展、社會進步、城市建設、民生改善等方面取得新成績、新面貌.綜合實力穩步提升.全市地區生產總值達到280000億元,將280000用科學記數法表示為()A.280×103 B.28×104 C.2.8×105 D.0.28×1066.如圖,一束平行太陽光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數是()A.26°. B.44°. C.46°. D.72°7.某幾何體由若干個大小相同的小正方體搭成,其主視圖與左視圖如圖所示,則搭成這個幾何體的小正方體最少有()A.4個 B.5個 C.6個 D.7個8.已知平面內不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣59.如圖是由若干個相同的小正方體搭成的一個幾何體的主視圖和俯視圖,則所需的小正方體的個數最少是()A. B. C. D.10.下列四個圖形分別是四屆國際數學家大會的會標,其中屬于中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個11.如圖,在平面直角坐標系中,線段AB的端點坐標為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點,則K的值不可能是()A.-5 B.-2 C.3 D.512.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖是一個立體圖形的三種視圖,則這個立體圖形的體積(結果保留π)為______________.14.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長線于F,若∠F=30°,DE=1,則BE的長是.15.如果一個正多邊形的中心角等于,那么這個正多邊形的邊數是__________.16.已知點A(2,0),B(0,2),C(-1,m)在同一條直線上,則m的值為___________.17.9的算術平方根是.18.已知線段厘米,厘米,線段c是線段a和線段b的比例中項,線段c的長度等于________厘米.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.20.(6分)某學校準備采購一批茶藝耗材和陶藝耗材.經查詢,如果按照標價購買兩種耗材,當購買茶藝耗材的數量是陶藝耗材數量的2倍時,購買茶藝耗材共需要18000元,購買陶藝耗材共需要12000元,且一套陶藝耗材單價比一套茶藝耗材單價貴150元.求一套茶藝耗材、一套陶藝耗材的標價分別是多少元?學校計劃購買相同數量的茶藝耗材和陶藝耗材.商家告知,因為周年慶,茶藝耗材的單價在標價的基礎上降價2元,陶藝耗材的單價在標價的基礎降價150元,該校決定增加采購數量,實際購買茶藝耗材和陶藝耗材的數量在原計劃基礎上分別增加了2.5%和,結果在結算時發現,兩種耗材的總價相等,求的值.21.(6分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.22.(8分)某地鐵站口的垂直截圖如圖所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C點到地面AD的距離(結果保留根號).23.(8分)已知關于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實數根,求實數m的取值范圍;(2)若方程兩實數根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實數m的值.24.(10分)如圖,已知一次函數y=x﹣3與反比例函數的圖象相交于點A(4,n),與軸相交于點B.填空:n的值為,k的值為;以AB為邊作菱形ABCD,使點C在軸正半軸上,點D在第一象限,求點D的坐標;考察反比函數的圖象,當時,請直接寫出自變量的取值范圍.25.(10分)對于平面直角坐標系中的點,將它的縱坐標與橫坐標的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標的取值范圍;(3),是以為半徑的上任意一點,當時,畫出滿足條件的最大圓,并直接寫出相應的半徑的值.(要求畫圖位置準確,但不必尺規作圖)26.(12分)在如圖的正方形網格中,每一個小正方形的邊長均為1.格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(﹣2,0),(﹣3,3).(1)請在圖中的網格平面內建立平面直角坐標系,寫出點B的坐標;(2)把△ABC繞坐標原點O順時針旋轉90°得到△A1B1C1,畫出△A1B1C1,寫出點B1的坐標;(3)以坐標原點O為位似中心,相似比為2,把△A1B1C1放大為原來的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側;請在x軸上求作一點P,使△PBB1的周長最小,并寫出點P的坐標.27.(12分)先化簡,然后從-2≤x≤2的范圍內選取一個合適的整數作為x的值代入求值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【詳解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故選B.【點睛】本題考查了線段長短的比較,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運用線段的和、差、倍轉化線段之間的數量關系是十分關鍵的一點.2、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數圖象與幾何變換.3、C【解析】
根據同底數冪相乘,底數不變指數相加;合并同類項,只把系數相加減,字母與字母的次數不變;同底數冪相除,底數不變指數相減,對各選項計算后利用排除法求解.【詳解】a2·a3﹦a5,故A項錯誤;a3+a3﹦2a3,故B項錯誤;a3+a3﹦-a6,故D項錯誤,選C.【點睛】本題考查同底數冪加減乘除及乘方,解題的關鍵是清楚運算法則.4、D【解析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.5、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將280000用科學記數法表示為2.8×1.故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、A【解析】
先根據正五邊形的性質求出∠EAB的度數,再由平行線的性質即可得出結論.【詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【點睛】此題考查平行線的性質,多邊形內角與外角,解題關鍵在于求出∠EAB.7、B【解析】
由主視圖和左視圖確定俯視圖的形狀,再判斷最少的正方體的個數.【詳解】由主視圖和左視圖可確定所需正方體個數最少時俯視圖(數字為該位置小正方體的個數)為:則搭成這個幾何體的小正方體最少有5個,故選B.【點睛】本題考查了由三視圖判斷幾何體,根據主視圖和左視圖畫出所需正方體個數最少的俯視圖是關鍵.【詳解】請在此輸入詳解!【點睛】請在此輸入點睛!8、A【解析】分析:根據點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標的相關知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標相等或互為相反數.9、B【解析】
主視圖、俯視圖是分別從物體正面、上面看,所得到的圖形.【詳解】綜合主視圖和俯視圖,底層最少有個小立方體,第二層最少有個小立方體,因此搭成這個幾何體的小正方體的個數最少是個.故選:B.【點睛】此題考查由三視圖判斷幾何體,解題關鍵在于識別圖形10、B【解析】
解:根據中心對稱的概念可得第一個圖形是中心對稱圖形,第二個圖形不是中心對稱圖形,第三個圖形是中心對稱圖形,第四個圖形不是中心對稱圖形,所以,中心對稱圖有2個.故選B.【點睛】本題考查中心對稱圖形的識別,掌握中心對稱圖形的概念是本題的解題關鍵.11、B【解析】
當直線y=kx-2與線段AB的交點為A點時,把A(-2,4)代入y=kx-2,求出k=-3,根據一次函數的有關性質得到當k≤-3時直線y=kx-2與線段AB有交點;當直線y=kx-2與線段AB的交點為B點時,把B(4,2)代入y=kx-2,求出k=1,根據一次函數的有關性質得到當k≥1時直線y=kx-2與線段AB有交點,從而能得到正確選項.【詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當直線y=kx-2與線段AB有交點,且過第二、四象限時,k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當直線y=kx-2與線段AB有交點,且過第一、三象限時,k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點,則k的值不可能是-2.故選B.【點睛】本題考查了一次函數y=kx+b(k≠0)的性質:當k>0時,圖象必過第一、三象限,k越大直線越靠近y軸;當k<0時,圖象必過第二、四象限,k越小直線越靠近y軸.12、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、250【解析】
從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查;圓柱體積公式=底面積×高.14、2【解析】∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°。∴Rt△DBE中,BE=2DE=2。15、12.【解析】
根據正n邊形的中心角的度數為進行計算即可得到答案.【詳解】解:根據正n邊形的中心角的度數為,則n=360÷30=12,故這個正多邊形的邊數為12,故答案為:12.【點睛】本題考查的是正多邊形內角和中心角的知識,掌握中心角的計算公式是解題的關鍵.16、3【解析】設過點A(2,0)和點B(0,2)的直線的解析式為:,則,解得:,∴直線AB的解析式為:,∵點C(-1,m)在直線AB上,∴,即.故答案為3.點睛:在平面直角坐標系中,已知三點共線和其中兩點的坐標,求第3點坐標中待定字母的值時,通常先由已知兩點的坐標求出過這兩點的直線的解析式,在將第3點的坐標代入所求解析式中,即可求得待定字母的值.17、1.【解析】
根據一個正數的算術平方根就是其正的平方根即可得出.【詳解】∵,∴9算術平方根為1.故答案為1.【點睛】本題考查了算術平方根,熟練掌握算術平方根的概念是解題的關鍵.18、1【解析】
根據比例中項的定義,列出比例式即可得出中項,注意線段不能為負.【詳解】∵線段c是線段a和線段b的比例中項,∴,解得(線段是正數,負值舍去),∴,故答案為:1.【點睛】本題考查比例線段、比例中項等知識,比例中項的平方等于兩條線段的乘積,熟練掌握基本概念是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據sin∠BAC=,求出OM,根據cos∠BAC=,求出AM,根據垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點睛】考查了切線的性質和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質,全等三角形的性質和判定等知識點的運用,通過做此題培養了學生的分析問題和解決問題的能力.20、(1)購買一套茶藝耗材需要450元,購買一套陶藝耗材需要600元;(2)的值為95.【解析】
(1)設購買一套茶藝耗材需要元,則購買一套陶藝耗材需要元,根據購買茶藝耗材的數量是陶藝耗材數量的2倍列方程求解即可;(2)設今年原計劃購買茶藝耗材和陶藝素材的數量均為,根據兩種耗材的總價相等列方程求解即可.【詳解】(1)設購買一套茶藝耗材需要元,則購買一套陶藝耗材需要元,根據題意,得.解方程,得.經檢驗,是原方程的解,且符合題意.答:購買一套茶藝耗材需要450元,購買一套陶藝耗材需要600元.(2)設今年原計劃購買茶藝耗材和陶藝素材的數量均為,由題意得:整理,得解方程,得,(舍去).的值為95.【點睛】本題考查了分式方程的應用及一元二次方程的應用,找出等量關系,列出方程是解答本題的關鍵,列方程解決實際問題注意要檢驗與實際情況是否相符.21、1-【解析】
利用零指數冪和絕對值的性質、特殊角的三角函數值、負指數次冪的性質進行計算即可.【詳解】解:原式=.【點睛】本題考查了零指數冪和絕對值的性質、特殊角的三角函數值、負指數次冪的性質,熟練掌握性質及定義是解題的關鍵.22、C點到地面AD的距離為:(2+2)m.【解析】
直接構造直角三角形,再利用銳角三角函數關系得出BE,CF的長,進而得出答案.【詳解】過點B作BE⊥AD于E,作BF∥AD,過C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由題意可得:BF∥AD,則∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°?BC=∴C點到地面AD的距離為:【點睛】考查解直角三角形,熟練掌握銳角三角函數是解題的關鍵.23、(1)m≥﹣;(2)m=2.【解析】
(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;(2)根據題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解關于m的方程,最后利用m的范圍確定滿足條件的m的值.【詳解】(1)根據題意得(2m+3)2﹣4(m2+2)≥1,解得m≥﹣;(2)根據題意x1+x2=2m+3,x1x2=m2+2,因為x1x2=m2+2>1,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=1,所以(2m+3)2﹣3(m2+2)﹣31=1,整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,而m≥﹣;所以m=2.【點睛】本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,.靈活應用整體代入的方法計算.24、(1)3,1;(2)(4+,3);(3)或【解析】
(1)把點A(4,n)代入一次函數y=x-3,得到n的值為3;再把點A(4,3)代入反比例函數,得到k的值為1;(2)根據坐標軸上點的坐標特征可得點B的坐標為(2,3),過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,根據勾股定理得到AB=,根據AAS可得△ABE≌△DCF,根據菱形的性質和全等三角形的性質可得點D的坐標;(3)根據反比函數的性質即可得到當y≥-2時,自變量x的取值范圍.【詳解】解:(1)把點A(4,n)代入一次函數y=x-3,可得n=×4-3=3;把點A(4,3)代入反比例函數,可得3=,解得k=1.(2)∵一次函數y=x-3與x軸相交于點B,∴x-3=3,解得x=2,∴點B的坐標為(2,3),如圖,過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,∵A(4,3),B(2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt△ABE中,AB=,∵四邊形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x軸,DF⊥x軸,∴∠AEB=∠DFC=93°,在△ABE與△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴點D的坐標為(4+,3).(3)當y=-2時,-2=,解得x=-2.故當y≥-2時,自變量x的取值范圍是x≤-2或x>3.25、(1)①﹣3;②;(2);(3)【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根據理想值定義即可得答案;②由理想值越大,點與原點連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點橫坐標即可;(3)根據題意將點轉化為直線,點理想值最大時點在上,分析圖形即可.【詳解】(1)①∵點在直線上,∴,∴點的“理想值”=-3,故答案為:﹣3.②當點在與軸切點時,點的“理想值”最小為0.當點縱坐標與橫坐標比值最大時,的“理想值”最大,此時直線與切于點,設點Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點的“理想值”為,故答案為:.(2)設直線與軸、軸的交點分別為點,點,當x=0時,y=3,當y=0時,x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 敏捷開發方法論2025年考試試題及答案
- 2025年軟考軟件設計師有效試題及答案匯編
- 法學概論從入門到精通的試題及答案
- 管理者的時間與精力分配計劃
- 會計軟件應用能力提升計劃
- 積極心理與職業幸福感提升計劃
- 供應鏈優化計劃
- 城市交通需求管理重點基礎知識點
- 美術班級文化建設活動計劃
- 2024年陜西師范大學輔導員考試真題
- 中國馬克思主義與當代思考題(附答案)
- 醫療機構發生醫療民事賠償情況以及衛生技術人員違法違規執業及其處理情況表
- 設計變更、工程指令、現場簽證管理辦法(修訂)
- 金屬風管支架重量計算表
- 光伏發電項目并網調試方案
- 【總平施工】室外總平施工組織設計
- 地溝更換管線專項施工方案完整
- 《鵝養殖技術》PPT課件
- 甲醇球形儲罐設計
- 殯葬資格考試:殯葬服務試題及答案
- 工業機器人安全操作規范PPT課件
評論
0/150
提交評論