




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇省泰興市實驗初中重點名校畢業升學考試模擬卷數學卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.實數a、b、c在數軸上的位置如圖所示,則代數式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b2.用加減法解方程組時,若要求消去,則應()A. B. C. D.3.拋物線y=–x2+bx+c上部分點的橫坐標x、縱坐標y的對應值如下表所示:x…–2–1012…y…04664…從上表可知,下列說法錯誤的是A.拋物線與x軸的一個交點坐標為(–2,0) B.拋物線與y軸的交點坐標為(0,6)C.拋物線的對稱軸是直線x=0 D.拋物線在對稱軸左側部分是上升的4.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.5.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數是()A.32° B.30° C.38° D.58°6.下列命題中錯誤的有()個(1)等腰三角形的兩個底角相等(2)對角線相等且互相垂直的四邊形是正方形(3)對角線相等的四邊形為矩形(4)圓的切線垂直于半徑(5)平分弦的直徑垂直于弦A.1B.2C.3D.47.如圖,已知△ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數為()A.90° B.95° C.105° D.110°8.在一些美術字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A. B. C. D.9.把不等式組的解集表示在數軸上,正確的是()A. B.C. D.10.下列說法中,正確的是()A.不可能事件發生的概率為0B.隨機事件發生的概率為C.概率很小的事件不可能發生D.投擲一枚質地均勻的硬幣100次,正面朝上的次數一定為50次11.如圖,點A,B,C在⊙O上,∠ACB=30°,⊙O的半徑為6,則的長等于()A.π B.2π C.3π D.4π12.已知一個多邊形的內角和是外角和的2倍,則此多邊形的邊數為()A.6 B.7 C.8 D.9二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若xay與3x2yb是同類項,則ab的值為_____.14.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統計圖,根據該統計圖可算得該花店銷售花卉的平均單價為_____元.15.分解因式:2x2-8x+8=__________.16.因式分解:16a3﹣4a=_____.17.因式分解:(a+1)(a﹣1)﹣2a+2=_____.18.甲乙兩人進行飛鏢比賽,每人各投5次,所得平均環數相等,其中甲所得環數的方差為15,乙所得環數如下:0,1,5,9,10,那么成績較穩定的是_____(填“甲”或“乙”).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知平行四邊形.尺規作圖:作的平分線交直線于點,交延長線于點(要求:尺規作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.20.(6分)如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.(1)求證:AB=AC;(2)若,求⊙O的半徑.21.(6分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結果精確到0.1米,參考數據:≈1.41,≈1.73,≈2.24,≈2.45)22.(8分)某鄉鎮實施產業扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節,已知該蜜柚的成本價為8元/千克,投入市場銷售時,調查市場行情,發現該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數關系如圖所示.(1)求與的函數關系式,并寫出的取值范圍;(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?(3)某農戶今年共采摘蜜柚4800千克,該品種蜜柚的保質期為40天,根據(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.23.(8分)為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.24.(10分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應用)在探究的條件下,設PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.25.(10分)解不等式組:并寫出它的所有整數解.26.(12分)我省有關部門要求各中小學要把“陽光體育”寫入課表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數據,如圖1是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:該校對多少名學生進行了抽樣調查?本次抽樣調查中,最喜歡足球活動的有多少人?占被調查人數的百分比是多少?若該校九年級共有400名學生,圖2是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請你估計全校學生中最喜歡籃球活動的人數約為多少?27.(12分)如圖,一次函數y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=1,OD=6,△AOB的面積為1.求一次函數與反比例函數的表達式;當x>0時,比較kx+b與的大小.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據數軸得到b<a<0<c,根據有理數的加法法則,減法法則得到c-a>0,a+b<0,根據絕對值的性質化簡計算.【詳解】由數軸可知,b<a<0<c,∴c-a>0,a+b<0,則|c-a|-|a+b|=c-a+a+b=c+b,故選A.【點睛】本題考查的是實數與數軸,絕對值的性質,能夠根據數軸比較實數的大小,掌握絕對值的性質是解題的關鍵.2、C【解析】
利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應①×5+②×3,
故選C【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.3、C【解析】當x=-2時,y=0,
∴拋物線過(-2,0),
∴拋物線與x軸的一個交點坐標為(-2,0),故A正確;
當x=0時,y=6,
∴拋物線與y軸的交點坐標為(0,6),故B正確;
當x=0和x=1時,y=6,
∴對稱軸為x=,故C錯誤;
當x<時,y隨x的增大而增大,
∴拋物線在對稱軸左側部分是上升的,故D正確;
故選C.4、A【解析】
根據軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;
B、不是軸對稱圖形,故本選項錯誤;
C、不是軸對稱圖形,故本選項錯誤;
D、不是軸對稱圖形,故本選項錯誤.
故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、A【解析】
根據∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點睛】此題考查了圓周角的性質與等腰三角形的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用.6、D【解析】分析:根據等腰三角形的性質、正方形的判定定理、矩形的判定定理、切線的性質、垂徑定理判斷即可.詳解:等腰三角形的兩個底角相等,(1)正確;對角線相等、互相平分且互相垂直的四邊形是正方形,(2)錯誤;對角線相等的平行四邊形為矩形,(3)錯誤;圓的切線垂直于過切點的半徑,(4)錯誤;平分弦(不是直徑)的直徑垂直于弦,(5)錯誤.故選D.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.7、C【解析】
根據等腰三角形的性質得到∠CDA=∠A=50°,根據三角形內角和定理可得∠DCA=80°,根據題目中作圖步驟可知,MN垂直平分線段BC,根據線段垂直平分線定理可知BD=CD,根據等邊對等角得到∠B=∠BCD,根據三角形外角性質可知∠B+∠BCD=∠CDA,進而求得∠BCD=25°,根據圖形可知∠ACB=∠ACD+∠BCD,即可解決問題.【詳解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根據作圖步驟可知,MN垂直平分線段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故選C【點睛】本題考查了等腰三角形的性質、三角形內角和定理、線段垂直平分線定理以及三角形外角性質,熟練掌握各個性質定理是解題關鍵.8、A【解析】
根據軸對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形;B、不是軸對稱圖形;C、不是軸對稱圖形;D、不是軸對稱圖形.故選:A.【點睛】本題考查的是軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、B【解析】
首先解出各個不等式的解集,然后求出這些解集的公共部分即可.【詳解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式組無解,故選B.【點睛】解不等式組時要注意解集的確定原則:同大取大,同小取小,大小小大取中間,大大小小無解了.10、A【解析】試題分析:不可能事件發生的概率為0,故A正確;隨機事件發生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發生,故C錯誤;投擲一枚質地均勻的硬幣100次,正面向上的次數為50次是隨機事件,D錯誤;故選A.考點:隨機事件.11、B【解析】
根據圓周角得出∠AOB=60°,進而利用弧長公式解答即可.【詳解】解:∵∠ACB=30°,∴∠AOB=60°,∴的長==2π,故選B.【點睛】此題考查弧長的計算,關鍵是根據圓周角得出∠AOB=60°.12、A【解析】試題分析:根據多邊形的外角和是310°,即可求得多邊形的內角的度數為720°,依據多邊形的內角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點:多邊形的內角和定理以及多邊形的外角和定理二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】試題解析:∵xay與3x2yb是同類項,∴a=2,b=1,則ab=2.14、17【解析】
根據餅狀圖求出25元所占比重為20%,再根據加權平均數求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點睛】本題考查了加權平均數的計算方法,屬于簡單題,計算25元所占權比是解題關鍵.15、2(x-2)2【解析】
先運用提公因式法,再運用完全平方公式.【詳解】:2x2-8x+8=.故答案為2(x-2)2.【點睛】本題考核知識點:因式分解.解題關鍵點:熟練掌握分解因式的基本方法.16、4a(2a+1)(2a﹣1)【解析】
首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握因式分解的方法.17、(a﹣1)1.【解析】
提取公因式(a?1),進而分解因式得出答案.【詳解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案為:(a﹣1)1.【點睛】此題主要考查了提取公因式法分解因式,找出公因式是解題關鍵.18、甲.【解析】乙所得環數的平均數為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩定.故答案為甲.點睛:要比較成績穩定即比方差大小,方差越大,越不穩定;方差越小,越穩定.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)見解析.【解析】試題分析:(1)作∠BAD的平分線交直線BC于點E,交DC延長線于點F即可;(2)先根據平行四邊形的性質得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據此可得出結論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點:作圖—基本作圖;平行四邊形的性質.20、(1)證明見解析;(2)1.【解析】
(1)由同圓半徑相等和對頂角相等得∠OBP=∠APC,由圓的切線性質和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據等角對等邊得AB=AC;(2)設⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據勾股定理列等式,并根據AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【詳解】解:(1)連接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB與⊙O相切于點B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)設⊙O的半徑為r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,則⊙O的半徑為1.【點睛】本題考查了圓的切線的性質,圓的切線垂直于經過切點的半徑;并利用勾股定理列等式,求圓的半徑;此類題的一般做法是:若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系;簡記作:見切點,連半徑,見垂直.21、(1)5.6(2)貨物MNQP應挪走,理由見解析.【解析】
(1)如圖,作AD⊥BC于點DRt△ABD中,AD=ABsin45°=4在Rt△ACD中,∵∠ACD=30°∴AC=2AD=4即新傳送帶AC的長度約為5.6米.(2)結論:貨物MNQP應挪走.在Rt△ABD中,BD=ABcos45°=4在Rt△ACD中,CD=ACcos30°=∴CB=CD—BD=∵PC=PB—CB≈4—2.1=1.9<2∴貨物MNQP應挪走.22、(1)();(2)定價為19元時,利潤最大,最大利潤是1210元.(3)不能銷售完這批蜜柚.【解析】【分析】(1)根據圖象利用待定系數法可求得函數解析式,再根據蜜柚銷售不會虧本以及銷售量大于0求得自變量x的取值范圍;(2)根據利潤=每千克的利潤×銷售量,可得關于x的二次函數,利用二次函數的性質即可求得;(3)先計算出每天的銷量,然后計算出40天銷售總量,進行對比即可得.【詳解】(1)設,將點(10,200)、(15,150)分別代入,則,解得,∴,∵蜜柚銷售不會虧本,∴,又,∴,∴,∴;(2)設利潤為元,則==,∴當時,最大為1210,∴定價為19元時,利潤最大,最大利潤是1210元;(3)當時,,110×40=4400<4800,∴不能銷售完這批蜜柚.【點睛】本題考查了一次函數的應用、二次函數的應用,弄清題意,找出數量間的關系列出函數解析式是解題的關鍵.23、(1)一個A品牌的足球需90元,則一個B品牌的足球需100元;(2)1.【解析】
(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,根據“購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數據代入求值即可.【詳解】(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,依題意得:,解得:.答:一個A品牌的足球需40元,則一個B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購買20個A品牌的足球和2個B品牌的足球的總費用是1元.考點:二元一次方程組的應用.24、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應用】:8.【解析】
(1)先根據平行線的性質和等量代換得出∠1=∠3,再利用中線性質得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點D作DN∥PE交直線CF于點N,由平行線性質得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點N,根據平行線的性質結合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據平行四邊形的性質結合三角形的面積公式求解即可.【詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點D作交直線于點,∴四邊形是平行四邊形,∵由問題結論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點N,∵是的中線,∴四邊形是平行四邊形.【應用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【點睛】此題重點考查學生對平行線性質,平行四邊形性質的綜合應用能力,熟練掌握平行線的性質是解題的關鍵.25、原不等式組的解集為,它的所有整數解為0,1.【解析】
先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后寫出它的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級數學探索與實踐活動計劃
- 2025版農產品運輸安全技術措施
- 2025至2030中國潮流玩具行業營銷渠道及未來銷售趨勢研究報告
- 基于多源數據的棗樹葉片氮素反演研究
- 室內裝飾工程進度管理與保障措施
- 河道治理土方開挖施工方案
- S700K道岔轉換設備運行狀態智能識別研究
- 五年級語文文化交流活動計劃
- 網絡直播節目播音策劃方案
- 中醫護理壓瘡預防與評估流程
- 蘇教版二年級下冊數學豎式計算300題及答案
- 骨腫瘤的放射治療和化學治療策略
- 高血糖危象急救護理
- 區塊鏈技術在數據隱私保護中的應用
- 23《海底世界》 第二課時 公開課一等獎創新教學設計
- 三七養生健康知識講座
- 北京社區衛生服務中心目錄
- 裝飾工程資金需求計劃
- 探究《水滸傳》中的黑白道義
- 報價單模板完
- 2024屆安徽省合肥市五十中學中考二模英語試題含答案
評論
0/150
提交評論