




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省稷山縣2023-2024學年中考一模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)2.如圖,在?ABCD中,對角線AC的垂直平分線分別交AD、BC于點E、F,連接CE,若△CED的周長為6,則?ABCD的周長為()A.6 B.12 C.18 D.243.一次函數與的圖象如圖所示,給出下列結論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個4.如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE5.如圖,△ABC內接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.6.化簡:(a+)(1﹣)的結果等于()A.a﹣2 B.a+2 C. D.7.如圖,直線、及木條在同一平面上,將木條繞點旋轉到與直線平行時,其最小旋轉角為().A. B. C. D.8.甲、乙兩名同學在一次用頻率去估計概率的實驗中,統計了某一結果出現的頻率繪出的統計圖如圖,則符合這一結果的實驗可能是()A.擲一枚正六面體的骰子,出現1點的概率B.拋一枚硬幣,出現正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數,它能被2整除的概率9.夏新同學上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為()元.A.+4B.﹣9C.﹣4D.+910.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=()A. B. C.12 D.2411.下面的統計圖反映了我國最近十年間核電發電量的增長情況,根據統計圖提供的信息,下列判斷合理的是()A.2011年我國的核電發電量占總發電量的比值約為1.5%B.2006年我國的總發電量約為25000億千瓦時C.2013年我國的核電發電量占總發電量的比值是2006年的2倍D.我國的核電發電量從2008年開始突破1000億千瓦時12.用半徑為8的半圓圍成一個圓錐的側面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在直角坐標系中,點A(2,0),點B(0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與△ABP相似,則所有滿足此條件的點P的坐標為___________________________.14.如圖,數軸上點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,若原點O是線段AC上的任意一點,那么a+b-2c=______.15.觀察下列圖形:它們是按一定的規律排列的,依照此規律,第n個圖形共有___個★.16.如圖,在△PAB中,PA=PB,M、N、K分別是PA,PB,AB上的點,且AM=BK,BN=AK.若∠MKN=40°,則∠P的度數為___17.王經理到襄陽出差帶回襄陽特產——孔明菜若干袋,分給朋友們品嘗.如果每人分5袋,還余3袋;如果每人分6袋,還差3袋,則王經理帶回孔明菜_________袋18.已知:如圖,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,此時線段OB1與AB的交點D恰好為AB的中點,則線段B1D=__________cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)今年5月,某大型商業集團隨機抽取所屬的m家商業連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統計圖表.評估成績n(分)
評定等級
頻數
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根據以上信息解答下列問題:(1)求m的值;(2)在扇形統計圖中,求B等級所在扇形的圓心角的大小;(結果用度、分、秒表示)(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經驗,求其中至少有一家是A等級的概率.20.(6分)關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22﹣x1x2=8,求m的值.21.(6分)由我國完全自主設計、自主建造的首艘國產航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續航行至小島的正南方向的處,求還需航行的距離的長.22.(8分)已知關于的一元二次方程.試證明:無論取何值此方程總有兩個實數根;若原方程的兩根,滿足,求的值.23.(8分)為提高節水意識,小申隨機統計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數據進行整理后,繪制成如圖所示的統計圖.(單位:升)(1)求這7天內小申家每天用水量的平均數和中位數;(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;(3)請你根據統計圖中的信息,給小申家提出一條合理的節約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節約用水量.24.(10分)甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題:(1)甲登山上升的速度是每分鐘米,乙在地時距地面的高度為米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數關系式.(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?25.(10分)如下表所示,有A、B兩組數:第1個數第2個數第3個數第4個數……第9個數……第n個數A組﹣6﹣5﹣2……58……n2﹣2n﹣5B組14710……25……(1)A組第4個數是;用含n的代數式表示B組第n個數是,并簡述理由;在這兩組數中,是否存在同一列上的兩個數相等,請說明.26.(12分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.27.(12分)某工廠計劃在規定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規定時間內可以多生產300個零件.求原計劃每天生產的零件個數和規定的天數.為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
直接利用位似圖形的性質得出對應點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質,數形結合思想解題是本題的解題關鍵.2、B【解析】∵四邊形ABCD是平行四邊形,∴DC=AB,AD=BC,∵AC的垂直平分線交AD于點E,∴AE=CE,∴△CDE的周長=DE+CE+DC=DE+AE+DC=AD+DC=6,∴?ABCD的周長=2×6=12,故選B.3、B【解析】
仔細觀察圖象,①k的正負看函數圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數圖象在上面,則哪個函數值大.【詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,
∴k<0正確;
②∵y2=x+a,與y軸的交點在負半軸上,
∴a<0,故②錯誤;
③當x<3時,y1>y2錯誤;
故正確的判斷是①.
故選B.【點睛】本題考查一次函數性質的應用.正確理解一次函數的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.4、B【解析】
先證明四邊形DBCE為平行四邊形,再根據矩形的判定進行解答.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE為矩形,故本選項錯誤;B、∵對角線互相垂直的平行四邊形為菱形,不一定為矩形,故本選項正確;C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE為矩形,故本選項錯誤;D、∵CE⊥DE,∴∠CED=90°,∴?DBCE為矩形,故本選項錯誤,故選B.【點睛】本題考查了平行四邊形的性質與判定,矩形的判定等,熟練掌握相關的判定定理與性質定理是解題的關鍵.5、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數定義.6、B【解析】
解:原式====.故選B.考點:分式的混合運算.7、B【解析】
如圖所示,過O點作a的平行線d,根據平行線的性質得到∠2=∠3,進而求出將木條c繞點O旋轉到與直線a平行時的最小旋轉角.【詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉角∠1+∠2=90°.故選B【點睛】本題主要考查圖形的旋轉與平行線,解題的關鍵是熟練掌握平行線的性質.8、C【解析】解:A.擲一枚正六面體的骰子,出現1點的概率為,故此選項錯誤;B.擲一枚硬幣,出現正面朝上的概率為,故此選項錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項正確;D.任意寫出一個整數,能被2整除的概率為,故此選項錯誤.故選C.9、B【解析】
收入和支出是兩個相反的概念,故兩個數字分別為正數和負數.【詳解】收入13元記為+13元,那么支出9元記作-9元【點睛】本題主要考查了正負數的運用,熟練掌握正負數的概念是本題的關鍵.10、A【解析】
解:如圖,設對角線相交于點O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB?DH=AC?BD,即5DH=×8×6,解得DH=.故選A.【點睛】本題考查菱形的性質.11、B【解析】
由折線統計圖和條形統計圖對各選項逐一判斷即可得.【詳解】解:A、2011年我國的核電發電量占總發電量的比值大于1.5%、小于2%,此選項錯誤;B、2006年我國的總發電量約為500÷2.0%=25000億千瓦時,此選項正確;C、2013年我國的核電發電量占總發電量的比值是2006年的顯然不到2倍,此選項錯誤;D、我國的核電發電量從2012年開始突破1000億千瓦時,此選項錯誤;故選:B.【點睛】本題考查的是條形統計圖和折線統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;折線統計圖表示的是事物的變化情況.12、A【解析】
由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點睛】此題主要考查了圓錐側面展開扇形與底面圓之間的關系,圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關鍵是應用半圓的弧長=圓錐的底面周長.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】∵點A(2,0),點B(0,1),∴OA=2,OB=1,.∵l⊥AB,∴∠PAC+OAB=90°.∵∠OBA+∠OAB=90°,∴∠OBA=∠PAC.∵∠AOB=∠ACP,∴△ABO∽△PAC,.設AC=m,PC=2m,.當點P在x軸的上方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2+2=4,∴P(4,4).當點P在x軸的下方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2-2=0,∴P(0,4).所以P點坐標為或(4,4)或或(0,4)【點睛】本題考察了相似三角形的判定,相似三角形的性質,平面直角坐標系點的坐標及分類討論的思想.在利用相似三角形的性質列比例式時,要找好對應邊,如果對應邊不確定,要分類討論.因點P在x軸上方和下方得到的結果也不一樣,所以要分兩種情況求解.請在此填寫本題解析!14、1【解析】∵點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,∴由中點公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案為1.15、【解析】
分別求出第1個、第2個、第3個、第4個圖形中★的個數,得到第5個圖形中★的個數,進而找到規律,得出第n個圖形中★的個數,即可求解.【詳解】第1個圖形中有1+3×1=4個★,
第2個圖形中有1+3×2=7個★,
第3個圖形中有1+3×3=10個★,
第4個圖形中有1+3×4=13個★,
第5個圖形中有1+3×5=16個★,
…
第n個圖形中有1+3×n=(3n+1)個★.故答案是:1+3n.【點睛】考查了規律型:圖形的變化類;根據圖形中變化的量和n的關系與不變的量得到圖形中★的個數與n的關系是解決本題的關鍵.16、100°【解析】
由條件可證明△AMK≌△BKN,再結合外角的性質可求得∠A=∠MKN,再利用三角形內角和可求得∠P.【詳解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案為100°【點睛】本題主要考查全等三角形的判定和性質及三角形內角和定理,利用條件證得△AMK≌△BKN是解題的關鍵.17、33.【解析】試題分析:設品嘗孔明菜的朋友有x人,依題意得,5x+3=6x-3,解得x=6,所以孔明菜有5x+3=33袋.考點:一元一次方程的應用.18、1.1【解析】試題解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵點D為AB的中點,∴OD=AB=2.1cm.∵將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案為1.1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)25;(2)8°48′;(3)56【解析】試題分析:(1)由C等級頻數為15除以C等級所占的百分比60%,即可求得m的值;(2)首先求得B等級的頻數,繼而求得B等級所在扇形的圓心角的大小;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與其中至少有一家是A等級的情況,再利用概率公式求解即可求得答案.試題解析:(1)∵C等級頻數為15,占60%,∴m=15÷60%=25;(2)∵B等級頻數為:25﹣2﹣15﹣6=2,∴B等級所在扇形的圓心角的大小為:225(3)評估成績不少于80分的連鎖店中,有兩家等級為A,有兩家等級為B,畫樹狀圖得:∵共有12種等可能的結果,其中至少有一家是A等級的有10種情況,∴其中至少有一家是A等級的概率為:1012=5考點:頻數(率)分布表;扇形統計圖;列表法與樹狀圖法.20、(1);(2)m=﹣.【解析】
(1)根據已知和根的判別式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;(2)根據根與系數的關系得出x1+x2=﹣2,x1?x2=2m,把x1+xx12+x22﹣x1x2=8變形為(x1+x2)2﹣3x1x2=8,代入求出即可.【詳解】(1)∵關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數根,∴△=22﹣4×1×2m=4﹣8m>0,解得:即m的取值范圍是(2)∵x1,x2是一元二次方程x2+2x+2m=0的兩個根,∴x1+x2=﹣2,x1?x2=2m,∵x12+x22﹣x1x2=8,∴(x1+x2)2﹣3x1x2=8,∴(﹣2)2﹣3×2m=8,解得:【點睛】本題考查了根的判別式和根與系數的關系,能熟記根的判別式的內容和根與系數的關系的內容是解此題的關鍵.21、還需要航行的距離的長為20.4海里.【解析】分析:根據題意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函數得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.詳解:由題知:,,.在中,,,(海里).在中,,,(海里).答:還需要航行的距離的長為20.4海里.點睛:此題考查了解直角三角形的應用-方向角問題,三角函數的應用;求出CD的長度是解決問題的關鍵.22、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據方程的系數結合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個實數根;(2)根據根與系數的關系可得出x1+x2=5、x1x2=6-p2-p,結合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個實數根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點睛:本題考查了根與系數的關系以及根的判別式,解題的關鍵是:(1)牢記“當△≥1時,方程有兩個實數根”;(2)根據根與系數的關系結合x12+x22-x1x2=3p2+1,求出p值.23、(1)平均數為800升,中位數為800升;(2)12.5%;(3)小申家沖廁所的用水量較大,可以將洗衣服的水留到沖廁所,采用以上建議,一個月估計可以節約用水3000升.【解析】試題分析:(1)根據平均數和中位數的定義求解可得;(2)用洗衣服的水量除以第3天的用水總量即可得;(3)根據條形圖給出合理建議均可,如:將洗衣服的水留到沖廁所.試題解析:解:(1)這7天內小申家每天用水量的平均數為(815+780+800+785+790+825+805)÷7=800(升),將這7天的用水量從小到大重新排列為:780、785、790、800、805、815、825,∴用水量的中位數為800升;(2)×100%=12.5%.答:第3天小申家洗衣服的水占這一天總用水量的百分比為12.5%;(3)小申家沖廁所的用水量較大,可以將洗衣服的水留到沖廁所,采用以上建議,每天可節約用水100升,一個月估計可以節約用水100×30=3000升.24、(1)10;1;(2);(3)4分鐘、9分鐘或3分鐘.【解析】
(1)根據速度=高度÷時間即可算出甲登山上升的速度;根據高度=速度×時間即可算出乙在A地時距地面的高度b的值;(2)分0≤x≤2和x≥2兩種情況,根據高度=初始高度+速度×時間即可得出y關于x的函數關系;(3)當乙未到終點時,找出甲登山全程中y關于x的函數關系式,令二者做差等于50即可得出關于x的一元一次方程,解之即可求出x值;當乙到達終點時,用終點的高度-甲登山全程中y關于x的函數關系式=50,即可得出關于x的一元一次方程,解之可求出x值.綜上即可得出結論.【詳解】(1)(10-100)÷20=10(米/分鐘),b=3÷1×2=1.故答案為:10;1.(2)當0≤x≤2時,y=3x;當x≥2時,y=1+10×3(x-2)=1x-1.當y=1x-1=10時,x=2.∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數關系式為.(3)甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數關系式為y=10x+100(0≤x≤20).當10x+100-(1x-1)=50時,解得:x=4;當1x-1-(10x+100)=50時,解得:x=9;當10-(10x+100)=50時,解得:x=3.答:登山4分鐘、9分鐘或3分鐘時,甲、乙兩人距地面的高度差為50米.【點睛】本題考查了一次函數的應用以及解一元一次方程,解題的關鍵是:(1)根據數量關系列式計算;(2)根據高度=初始高度+速度×時間找出y關于x的函數關系式;(3)將兩函數關系式做差找出關于x的一元一次方程.25、(1)3;(2),理由見解析;理由見解析(3)不存在,理由見解析【解析】
(1)將n=4代入n2-2n-5中即可求解;(2)當n=1,2,3,…,9,…,時對應的數分別為3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可歸納出第n個數是3n-2;(3)“在這兩組數中,是否存在同一列上的兩個數相等”,將問題轉換為n2-2n-5=3n-2有無正整數解的問題.【詳解】解:(1))∵A組第n個數為n2-2n-5,∴A組第4個數是42-2×4-5=3,故答案為3;(2)第n個數是.理由如下:∵第1個數為1,可寫成3×1-2;第2個數為4,可寫成3×2-2;第3個數為7,可寫成3×3-2;第4個數為10,可寫成3×4-2;……第9個數為25,可寫成3×9-2;∴第n個數為3n-2;故答案為3n-2;(3)不存在同一位置上存在兩個數據相等;由題意得,,解之得,由于是正整數,所以不存在列上兩個數相等.【點睛】本題考查了數字的變化類,正確的找出規律是解題的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息系統監理師考試準備的時間規劃試題及答案
- 公路路基處理技術試題及答案
- 公路工程中的勞務用工管理試題及答案
- 深度分析行政組織理論趨勢試題及答案
- 學習路上的幫助三級數據庫試題及答案
- 理解數據標準化在數據庫中的必要性試題及答案
- 金屬絲繩在隧道工程中的應用與創新考核試卷
- 嵌入式編程技能測試試題及答案
- 計算機租賃業務中的風險管理框架優化與實施案例考核試卷
- 行政組織的數字化轉型與挑戰試題及答案
- T/BCEA 001-2022裝配式建筑施工組織設計規范
- 2025年《高級養老護理員》考試練習題庫含答案
- 骨科手術圍手術期管理
- 委托尋找房源協議書
- 法洛四聯癥的護理課件
- 2025年佛山市三水海江建設投資有限公司招聘筆試參考題庫附帶答案詳解
- DB44-T 2458-2024 水庫土石壩除險加固設計規范
- 2025屆高考語文寫作押題作文10篇
- 2025年山東光明電力服務公司招聘筆試參考題庫含答案解析
- 【MOOC】電子技術實驗-北京科技大學 中國大學慕課MOOC答案
- 《機械制造技術基礎》期末考試試卷及答案
評論
0/150
提交評論