三角函數(shù)的函數(shù)值與角度計(jì)算_第1頁
三角函數(shù)的函數(shù)值與角度計(jì)算_第2頁
三角函數(shù)的函數(shù)值與角度計(jì)算_第3頁
三角函數(shù)的函數(shù)值與角度計(jì)算_第4頁
三角函數(shù)的函數(shù)值與角度計(jì)算_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

三角函數(shù)的函數(shù)值與角度計(jì)算三角函數(shù)基本概念三角函數(shù)圖像與性質(zhì)三角函數(shù)誘導(dǎo)公式及應(yīng)用三角函數(shù)與解三角形三角函數(shù)在實(shí)際問題中的應(yīng)用三角函數(shù)綜合練習(xí)題選講目錄CONTENTS01三角函數(shù)基本概念123在直角三角形中,正弦值等于對(duì)邊長度除以斜邊長度,即sin(θ)=對(duì)邊/斜邊。正弦(sine)在直角三角形中,余弦值等于鄰邊長度除以斜邊長度,即cos(θ)=鄰邊/斜邊。余弦(cosine)在直角三角形中,正切值等于對(duì)邊長度除以鄰邊長度,即tan(θ)=對(duì)邊/鄰邊。正切(tangent)正弦、余弦、正切定義角度制與弧度制轉(zhuǎn)換角度制轉(zhuǎn)弧度制將角度乘以π再除以180,即θ(弧度)=θ(角度)×π/180。弧度制轉(zhuǎn)角度制將弧度乘以180再除以π,即θ(角度)=θ(弧度)×180/π。特殊角度三角函數(shù)值45°(或π/4弧度)sin(45°)=√2/2,cos(45°)=√2/2,tan(45°)=1。30°(或π/6弧度)sin(30°)=1/2,cos(30°)=√3/2,tan(30°)=√3/3。0°(或0弧度)sin(0°)=0,cos(0°)=1,tan(0°)=0。60°(或π/3弧度)sin(60°)=√3/2,cos(60°)=1/2,tan(60°)=√3。90°(或π/2弧度)sin(90°)=1,cos(90°)=0,tan(90°)不存在。02三角函數(shù)圖像與性質(zhì)正弦函數(shù)的圖像是一個(gè)周期性的波動(dòng)曲線,也稱為正弦波。在平面直角坐標(biāo)系中,正弦函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,且在一個(gè)周期內(nèi)(如[0,2π])呈現(xiàn)出一個(gè)完整的波形。圖像正弦函數(shù)具有周期性、奇偶性、有界性等性質(zhì)。其周期為2π,即sin(x+2π)=sinx;正弦函數(shù)是奇函數(shù),即sin(-x)=-sinx;其值域?yàn)閇-1,1],即正弦函數(shù)的取值范圍在-1到1之間。性質(zhì)正弦函數(shù)圖像及性質(zhì)余弦函數(shù)的圖像也是一個(gè)周期性的波動(dòng)曲線,與正弦函數(shù)圖像相似,但相位相差π/2。余弦函數(shù)的圖像關(guān)于y軸對(duì)稱。圖像余弦函數(shù)同樣具有周期性、奇偶性、有界性等性質(zhì)。其周期為2π,即cos(x+2π)=cosx;余弦函數(shù)是偶函數(shù),即cos(-x)=cosx;其值域?yàn)閇-1,1],即余弦函數(shù)的取值范圍在-1到1之間。性質(zhì)余弦函數(shù)圖像及性質(zhì)圖像正切函數(shù)的圖像是一個(gè)無限延伸的曲線,它在每一個(gè)開區(qū)間(kπ-π/2,kπ+π/2)(k為整數(shù))內(nèi)都是單調(diào)增加的。正切函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱。性質(zhì)正切函數(shù)具有周期性、奇偶性、無界性等性質(zhì)。其周期為π,即tan(x+π)=tanx;正切函數(shù)是奇函數(shù),即tan(-x)=-tanx;正切函數(shù)的值域?yàn)槿w實(shí)數(shù),即它在整個(gè)定義域內(nèi)取值范圍為(-∞,+∞)。正切函數(shù)圖像及性質(zhì)03三角函數(shù)誘導(dǎo)公式及應(yīng)用誘導(dǎo)公式推導(dǎo)過程通過三角函數(shù)的和差公式,可以將一些復(fù)雜的角度拆分為簡單的角度之和或之差,從而簡化計(jì)算過程。利用三角函數(shù)的和差公式三角函數(shù)具有周期性,可以通過加減周期的整數(shù)倍來得到新的角度,從而利用已知的三角函數(shù)值來求解未知的角度。利用三角函數(shù)的周期性正弦函數(shù)和余弦函數(shù)具有奇偶性,即sin(-x)=-sin(x),cos(-x)=cos(x)。利用這一性質(zhì),可以將一些角度轉(zhuǎn)化為銳角或鈍角來求解。利用三角函數(shù)的奇偶性求任意角的三角函數(shù)值通過誘導(dǎo)公式,可以將任意角轉(zhuǎn)化為0到360度之間的一個(gè)基本角,然后利用基本角的三角函數(shù)值來求解。判斷三角函數(shù)的符號(hào)根據(jù)角度所在的象限,可以確定三角函數(shù)的符號(hào)。例如,在第一象限中,正弦函數(shù)和余弦函數(shù)均為正;在第二象限中,正弦函數(shù)為正,余弦函數(shù)為負(fù)等。證明三角恒等式利用誘導(dǎo)公式和已知的三角恒等式,可以證明一些復(fù)雜的三角恒等式。010203利用誘導(dǎo)公式求值例題1求sin(135°)的值。解析根據(jù)三角函數(shù)的符號(hào)規(guī)律,在第二象限中,正弦函數(shù)為正。因此,sin(α)>0。解析利用誘導(dǎo)公式,可以將135°轉(zhuǎn)化為45°+90°,然后根據(jù)正弦函數(shù)的性質(zhì)sin(90°-x)=cos(x),得到sin(135°)=cos(45°)=√2/2。例題3證明cos(π/2+x)=-sin(x)。例題2判斷sin(α)的符號(hào),其中α為第二象限角。解析利用誘導(dǎo)公式和余弦函數(shù)的性質(zhì)cos(π/2+x)=cos[π/2-(-x)]=sin(-x)=-sin(x),從而證明了cos(π/2+x)=-sin(x)。典型例題解析04三角函數(shù)與解三角形任意三角形邊角關(guān)系任意三角形的內(nèi)角和為180°任意三角形的兩邊之和大于第三邊,兩邊之差小于第三邊任意三角形的外角和為360°任意三角形的三個(gè)內(nèi)角中,最大角對(duì)應(yīng)最長邊,最小角對(duì)應(yīng)最短邊正弦定理及其應(yīng)用在任意三角形中,各邊與其對(duì)應(yīng)角的正弦值的比相等,即a/sinA=b/sinB=c/sinC=2R(R為三角形外接圓半徑)正弦定理已知三角形的兩邊和其中一邊的對(duì)角,可以求出三角形的其他邊和角;已知三角形的兩角和夾角的對(duì)邊,可以求出三角形的其他邊和角。應(yīng)用余弦定理在任意三角形中,任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍,即a2=b2+c2-2bc×cosA要點(diǎn)一要點(diǎn)二應(yīng)用已知三角形的三邊,可以求出三角形的三個(gè)角;已知三角形的兩邊和夾角,可以求出三角形的第三邊。余弦定理及其應(yīng)用05三角函數(shù)在實(shí)際問題中的應(yīng)用03判斷三角形的形狀通過計(jì)算三角形的三個(gè)內(nèi)角,可以判斷三角形的形狀,如等邊三角形、等腰三角形、直角三角形等。01計(jì)算角度利用三角函數(shù)可以計(jì)算三角形中的角度,例如已知三角形的兩邊長,可以利用正弦定理或余弦定理求解角度。02計(jì)算邊長在已知三角形的一個(gè)角度和相鄰的兩邊長時(shí),可以利用三角函數(shù)計(jì)算三角形的另一邊長。在幾何問題中的應(yīng)用力的合成與分解在物理學(xué)中,三角函數(shù)常用于力的合成與分解,例如在斜面上的物體受力分析時(shí),需要將重力分解為沿斜面向下的分力和垂直于斜面的分力。振動(dòng)與波動(dòng)在振動(dòng)與波動(dòng)問題中,三角函數(shù)可以描述簡諧振動(dòng)和簡諧波的位移、速度和加速度隨時(shí)間的變化規(guī)律。光學(xué)在光學(xué)中,三角函數(shù)可以用于計(jì)算光的折射、反射和衍射等問題中的角度和距離。在物理問題中的應(yīng)用機(jī)械設(shè)計(jì)在機(jī)械設(shè)計(jì)中,三角函數(shù)可以用于計(jì)算齒輪的模數(shù)、齒數(shù)和壓力角等參數(shù),以及機(jī)構(gòu)運(yùn)動(dòng)學(xué)中的速度和加速度等問題。電氣工程在電氣工程中,三角函數(shù)可以用于計(jì)算交流電的電壓、電流和功率等參數(shù),以及電路中的阻抗和相位等問題。測量與定位在工程測量中,三角函數(shù)常用于計(jì)算兩點(diǎn)之間的距離、高度差和角度等參數(shù),例如在建筑工程中測量建筑物的高度和角度。在工程問題中的應(yīng)用06三角函數(shù)綜合練習(xí)題選講選擇題選講題目:若sinα=1/2,且α為第二象限角,則α=___.A.30°C.-30°B.150°選擇題選講答案:B題目:已知tanα=-√3,則α的可能取值為_______.選擇題選講選擇題選講010203B.2π/3C.-π/3A.π/3D.-2π/3答案:D選擇題選講題目已知sinα+cosα=1/5,且0<α<π,則tanα=_______.答案-4/3題目函數(shù)y=sin(2x+π/3)的單調(diào)遞增區(qū)間是_______.答案[kπ-5π/12,kπ+π/12],k∈Z填空題選講VS已知sin(π+α)=-1/2,求cos(2π-α)的值.解析由sin(π+α)=-sinα=-1/2得sinα=1/2。因?yàn)閟in^2α+cos^2α=1,所以cosα=±√(1-sin^2α)=±√3/2。因此,cos(2π-α)=cos(-α)=cosα=±√3/2。題目解答題選講已知tan(π/4+α)=3,求sin(2α-π/4)的值.由tan(π/4+α)=(1+tanα)/(1-tanα)=3得tanα=1/2。利用二倍角公式,sin2α

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論