




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市楊浦區交大附中2023-2024學年高考臨考沖刺數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,,,則的大小關系是()A. B. C. D.2.世紀產生了著名的“”猜想:任給一個正整數,如果是偶數,就將它減半;如果是奇數,則將它乘加,不斷重復這樣的運算,經過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數的值為,則輸出的的值是()A. B. C. D.3.等比數列的前項和為,若,,,,則()A. B. C. D.4.若函數有且僅有一個零點,則實數的值為()A. B. C. D.5.函數的大致圖像為()A. B.C. D.6.已知函數若函數在上零點最多,則實數的取值范圍是()A. B. C. D.7.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-288.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π9.已知函數,,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.10.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.011.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.12.若函數的圖象經過點,則函數圖象的一條對稱軸的方程可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數的圖象向右平移個單位長度后得到函數的圖象,則函數的最大值為______.14.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.15.展開式的第5項的系數為_____.16.函數的極大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,,為其右焦點,,且該橢圓的離心率為;(Ⅰ)求橢圓的標準方程;(Ⅱ)過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點.若,求取值范圍.18.(12分)已知拋物線E:y2=2px(p>0),焦點F到準線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.19.(12分)的內角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積20.(12分)已知,(其中).(1)求;(2)求證:當時,.21.(12分)在平面直角坐標系xOy中,曲線C1的參數方程為(φ為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標方程;(2)設M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.22.(10分)已知函數.(1)討論的單調性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
選取中間值和,利用對數函數,和指數函數的單調性即可求解.【詳解】因為對數函數在上單調遞增,所以,因為對數函數在上單調遞減,所以,因為指數函數在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數函數和指數函數的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、常考題型.2、C【解析】
列出循環的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數不成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,成立,跳出循環,輸出的值為.故選:C.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.3、D【解析】試題分析:由于在等比數列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數列.4、D【解析】
推導出函數的圖象關于直線對稱,由題意得出,進而可求得實數的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數的圖象關于直線對稱.若函數的零點不為,則該函數的零點必成對出現,不合題意.所以,,即,解得或.①當時,令,得,作出函數與函數的圖象如下圖所示:此時,函數與函數的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數的零點個數求參數,考查函數圖象對稱性的應用,解答的關鍵就是推導出,在求出參數后要對參數的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.5、D【解析】
通過取特殊值逐項排除即可得到正確結果.【詳解】函數的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.6、D【解析】
將函數的零點個數問題轉化為函數與直線的交點的個數問題,畫出函數的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結合,即可求解.【詳解】由圖知與有個公共點即可,即,當設切點,則,.故選:D.【點睛】本題考查了函數的零點個數的問題,曲線的切線問題,注意運用轉化思想和數形結合思想,屬于較難的壓軸題.7、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.8、C【解析】
兩函數的圖象如圖所示,則圖中|MN|最小,設M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.9、B【解析】
由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調遞增,且時,.當時,,在上單調遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數與方程的關系,考查函數的單調性與最值,轉化的數學思想,屬于中檔題.10、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.11、C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.12、B【解析】
由點求得的值,化簡解析式,根據三角函數對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據三角函數圖象上點的坐標求參數,考查三角恒等變換,考查三角函數對稱軸的求法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由三角函數圖象相位變換后表達函數解析式,再利用三角恒等變換與輔助角公式整理的表達式,進而由三角函數值域求得最大值.【詳解】將函數的圖象向右平移個單位長度后得到函數的圖象,則所以,當函數最大,最大值為故答案為:【點睛】本題考查表示三角函數圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數式并求最值,屬于簡單題.14、【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.15、70【解析】
根據二項式定理的通項公式,可得結果.【詳解】由題可知:第5項為故第5項的的系數為故答案為:70.【點睛】本題考查的是二項式定理,屬基礎題。16、【解析】
先求函的定義域,再對函數進行求導,再解不等式得單調區間,進而求得極值點,即可求出函數的極大值.【詳解】函數,,,令得,,當時,,函數單調遞增;當時,,函數單調遞減,當時,函數取到極大值,極大值為.故答案為:.【點睛】本題考查利用導數研究函數的極值,考查函數與方程思想、轉化與化歸思想,考查運算求解能力,求解時注意定義域優先法則的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)由題意可得,的坐標,結合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設直線,求得的坐標,再設直線,求出點的坐標,寫出的方程,聯立與,可求出的坐標,由,可得關于的函數式,由單調性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標準方程為;(Ⅱ)設直線,則與直線的交點,又,設直線,聯立,消可得.解得,,聯立,得,,直線,聯立,解得,,,,,,,,函數在上單調遞增,,.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查運算求解能力,意在考查學生對這些知識的理解掌握水平和分析推理計算能力.18、(1)y2=6x(2).【解析】
(1)根據拋物線定義,寫出焦點坐標和準線方程,列方程即可得解;(2)根據中點坐標表示出|AB|和點到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點F(,0)到準線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設線段AB的中點為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個解,所以AB的垂直平分線與x軸的交點C為定點,且點C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個實根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當且僅當9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時等號成立,所以S△ABC的最大值為.【點睛】此題考查根據焦點和準線關系求拋物線方程,根據直線與拋物線位置關系求解三角形面積的最值,表示三角形的面積關系常涉及韋達定理整體代入,拋物線中需要考慮設點坐標的技巧,處理最值問題常用函數單調性求解或均值不等式求最值.19、(1).(2).【解析】
由已知利用正弦定理,同角三角函數基本關系式可求,結合范圍,可求,由已知利用二倍角的余弦函數公式可得,結合范圍,可求A,根據三角形的內角和定理即可解得C的值.由及正弦定理可得b的值,根據兩角和的正弦函數公式可求sinC的值,進而根據三角形的面積公式即可求解.【詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【點睛】本題主要考查了正弦定理,同角三角函數基本關系式,二倍角的余弦函數公式,三角形的內角和定理,兩角和的正弦函數公式,三角形的面積公式等知識在解三角形中的應用,考查了計算能力和轉化思想,屬于中檔題.20、(1)(2)見解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當時,;假設當時,結論成立,即,兩邊同乘以3得:而∴,即時結論也成立,∴當時,成立.綜上原不等式獲證.21、(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】
(Ⅰ)消去參數φ可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年機械工程師資格證書考試通訊錄試題及答案
- 2025年中國推車型水泵市場調查研究報告
- 2025年中國排氣座市場調查研究報告
- 2025年中國按鈕元件市場調查研究報告
- 從醫學角度探討如何利用稻米對抗衰老現象
- 2025年中國微膨脹砼數據監測報告
- 2025年中國微型風箏數據監測研究報告
- 2025年中國彩色橡膠數據監測報告
- 2025年中國強陽離子交換柱市場調查研究報告
- 2025年中國開票機數據監測報告
- 電臺項目可行性研究報告
- 2025年度事業單位招聘考試公共基礎知識仿真模擬試卷及答案(共五套)
- 2025年廣西壯族自治區南寧市中考一模生物試題(含答案)
- 長江流域大水面生態漁業的發展現狀與發展潛力分析
- 撤資退股合同協議
- 上海市嘉定區聯考2023-2024學年五年級下學期期中數學試題(含答案)
- 賓館住房協議書范本
- 電視臺影視拍攝合同協議
- 人教版(2024)七年級下冊英語期中質量檢測試卷(含答案)
- 針刺傷預防與處理(中華護理學會團體標準)
- 2024年度《安全教育家長會》課件
評論
0/150
提交評論