白銀市重點中學2023年數學九上期末學業水平測試試題含解析_第1頁
白銀市重點中學2023年數學九上期末學業水平測試試題含解析_第2頁
白銀市重點中學2023年數學九上期末學業水平測試試題含解析_第3頁
白銀市重點中學2023年數學九上期末學業水平測試試題含解析_第4頁
白銀市重點中學2023年數學九上期末學業水平測試試題含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

白銀市重點中學2023年數學九上期末學業水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.反比例函數y=的圖象經過點(2,5),若點(1,n)在此反比例函數的圖象上,則n等于()A.10 B.5 C.2 D.2.下列事件是必然事件的是()A.若是的黃金分割點,則B.若有意義,則C.若,則D.拋擲一枚骰子,奇數點向上的概率是3.下列事件是隨機事件的是()A.畫一個三角形,其內角和是 B.射擊運動員射擊一次,命中靶心C.投擲一枚正六面體骰子,朝上一面的點數小于 D.在只裝了紅球的不透明袋子里,摸出黑球4.邊長為2的正六邊形的面積為()A.6 B.6 C.6 D.5.遵義市脫貧攻堅工作中農村危房改造惠及百萬余人,2008年以來全市累計實施農村危房改造40.37萬戶,其中的數據40.37萬用科學記數法表示為()A. B. C. D.6.如圖是成都市某周內日最高氣溫的折線統計圖,關于這7天的日最高氣溫的說法正確的是()A.極差是8℃ B.眾數是28℃ C.中位數是24℃ D.平均數是26℃7.如圖所示,拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示,下列結論:①;②;③方程的兩個根是;④方程有一個實根大于;⑤當時,隨增大而增大.其中結論正確的個數是()A.個 B.個 C.個 D.個8.如果兩個相似多邊形的面積比為4:9,那么它們的周長比為()A.: B.2:3 C.4:9 D.16:819.拋物線的項點坐標是()A. B. C. D.10.反比例函數圖象的一支如圖所示,的面積為2,則該函數的解析式是()A. B. C. D.二、填空題(每小題3分,共24分)11.把邊長分別為1和2的兩個正方形按如圖所示的方式放置,則圖中陰影部分的面積是_____.12.如圖,將繞點順時針旋轉得到,點的對應點是點,直線與直線所夾的銳角是_______.13.一種藥品經過兩次降價,藥價從每盒80元下調至45元,平均每次降價的百分率是__.14.已知關于x的方程x2-3x+m=0的一個根是1,則m=__________.15.如圖,直線與軸交于點,與軸交于點,點在軸的正半軸上,,過點作軸交直線于點,若反比例函數的圖象經過點,則的值為_________________.16.如圖,是⊙O的直徑,弦,垂足為E,如果,那么線段OE的長為__________.17.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.18.在中,,如圖①,點從的頂點出發,沿的路線以每秒1個單位長度的速度勻速運動到點,在運動過程中,線段的長度隨時間變化的關系圖象如圖②所示,則的長為__________.三、解答題(共66分)19.(10分)閱讀下面材料,完成(1)-(3)題.數學課上,老師出示了這樣一道題:如圖,△ABC中,D為BC中點,且AD=AC,M為AD中點,連結CM并延長交AB于N.探究線段AN、MN、CN之間的數量關系,并證明.同學們經過思考后,交流了自已的想法:小明:“通過觀察和度量,發現線段AN、AB之間存在某種數量關系.”小強:“通過倍長不同的中線,可以得到不同的結論,但都是正確的,大家就大膽的探究吧.”小偉:“通過構造、證明相似三角形、全等三角形,就可以將問題解決.”......老師:“若其他條件不變,設AB=a,則可以用含a的式子表示出線段CM的長.”(1)探究線段AN、AB之間的數量關系,并證明;(2)探究線段AN、MN、CN之間的數量關系,并證明;(3)設AB=a,求線段CM的長(用含a的式子表示).20.(6分)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,G是上一動點,AG,DC的延長線交于點F,連接AC,AD,GC,GD.(1)求證:∠FGC=∠AGD;(2)若AD=1.①當AC⊥DG,CG=2時,求sin∠ADG;②當四邊形ADCG面積最大時,求CF的長.21.(6分)4件同型號的產品中,有1件不合格品和3件合格品.(1)從這4件產品中隨機抽取1件進行檢測,求抽到的是不合格品的概率;(2)從這4件產品中隨機抽取2件進行檢測,求抽到的都是合格品的概率;(3)在這4件產品中加入x件合格品后,進行如下試驗:隨機抽取1件進行檢測,然后放回,多次重復這個試驗,通過大量重復試驗后發現,抽到合格品的頻率穩定在0.95,則可以推算出x的值大約是多少?22.(8分)如圖,四邊形是平行四邊形,、是對角線上的兩個點,且.求證:.23.(8分)如圖,△ABC和△DEF均為正三角形,D,E分別在AB,BC上,請找出一個與△DBE相似的三角形并證明.24.(8分)如圖,在平面直角坐標系中,點O為坐標原點,A點的坐標為(3,0),以OA為邊作等邊三角形OAB,點B在第一象限,過點B作AB的垂線交x軸于點C.動點P從O點出發沿著OC向點C運動,動點Q從B點出發沿著BA向點A運動,P,Q兩點同時出發,速度均為1個單位/秒.當其中一個點到達終點時,另一個點也隨之停止.設運動時間為t秒.(1)求線段BC的長;(2)過點Q作x軸垂線,垂足為H,問t為何值時,以P、Q、H為頂點的三角形與△ABC相似;(3)連接PQ交線段OB于點E,過點E作x軸的平行線交線段BC于點F.設線段EF的長為m,求m與t之間的函數關系式,并直接寫出自變量t的取值范圍.25.(10分)在矩形中,,,是射線上的點,連接,將沿直線翻折得.(1)如圖①,點恰好在上,求證:∽;(2)如圖②,點在矩形內,連接,若,求的面積;(3)若以點、、為頂點的三角形是直角三角形,則的長為.26.(10分)如圖,在中,,在,上取一點,以為直徑作,與相交于點,作線段的垂直平分線交于點,連接.(1)求證:是的切線;(2)若,的半徑為.求線段與線段的長.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】解:因為反比例函數y=的圖象經過點(2,5),所以k=所以反比例函數的解析式為y=,將點(1,n)代入可得:n=10.故選:A2、D【分析】根據必然事件是肯定會發生的事件,對每個選項進行判斷,即可得到答案.【詳解】解:A、若是的黃金分割點,則;則A為不可能事件;B、若有意義,則;則B為隨機事件;C、若,則,則C為不可能事件;D、拋擲一枚骰子,奇數點向上的概率是;則D為必然事件;故選:D.【點睛】本題考查了必然事件的定義,解題的關鍵是熟練掌握定義.3、B【分析】根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】A、畫一個三角形,其內角和是360°是不可能事件,故本選項錯誤;

B、射擊運動員射擊一次,命中靶心是隨機事件,故本選項正確;

C、投擲一枚正六面體骰子,朝上一面的點數小于7是必然事件,故本選項錯誤;

D、在只裝了紅球的不透明袋子里,摸出黑球是不可能事件,故本選項錯誤.

故選:C.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.4、A【解析】首先根據題意作出圖形,然后可得△OBC是等邊三角形,然后由三角函數的性質,求得OH的長,繼而求得正六邊形的面積.【詳解】解:如圖,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,∴∠BOC=×360°=60°,∵OB=0C,∴△OBC是等邊三角形,∴BC=OB=OC=2,∴它的半徑為2,邊長為2;∵在Rt△OBH中,OH=OB?sin60°=2×,∴邊心距是:;∴S正六邊形ABCDEF=6S△OBC=6××2×=6.故選:A.【點睛】本題考查圓的內接正六邊形的性質、正多邊形的內角和、等邊三角形的判定與性質以及三角函數等知識.此題難度不大,注意掌握數形結合思想的應用.5、B【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:根據科學記數法的定義:40.37萬=故選:B.【點睛】此題考查的是科學記數法,掌握科學記數法的定義是解決此題的關鍵.6、B【解析】分析:根據折線統計圖中的數據可以判斷各個選項中的數據是否正確,從而可以解答本題.詳解:由圖可得,極差是:30-20=10℃,故選項A錯誤,眾數是28℃,故選項B正確,這組數按照從小到大排列是:20、22、24、26、28、28、30,故中位數是26℃,故選項C錯誤,平均數是:℃,故選項D錯誤,故選B.點睛:本題考查折線統計圖、極差、眾數、中位數、平均數,解答本題的關鍵是明確題意,能夠判斷各個選項中結論是否正確.7、A【解析】根據二次函數的圖象與性質進行解答即可.【詳解】解:∵拋物線開口方向向下∴a<0又∵對稱軸x=1∴∴b=-2a>0又∵當x=0時,可得c=3∴abc<0,故①正確;∵b=-2a>0,∴y=ax2-2ax+c當x=-1,y<0∴a+2a+c<0,即3a+c<0又∵a<0∴4a+c<0,故②錯誤;∵,c=3∴∴x(ax-b)=0又∵b=-2a∴,即③正確;∵對稱軸x=1,與x軸的左交點的橫坐標小于0∴函數圖像與x軸的右交點的橫坐標大于2∴的另一解大于2,故④正確;由函數圖像可得,當時,隨增大而增大,故⑤正確;故答案為A.【點睛】本題考查二次函數的圖象與性質,熟練運用二次函數的基本知識和正確運用數形結合思想是解答本題的關鍵.8、B【分析】根據面積比為相似比的平方即可求得結果.【詳解】解:∵兩個相似多邊形的面積比為4:9,∴它們的周長比為:=.故選B.【點睛】本題主要考查圖形相似的知識點,解此題的關鍵在于熟記兩個相似多邊形的面積比為其相似比的平方.9、D【分析】由二次函數頂點式:,得出頂點坐標為,根據這個知識點即可得出此二次函數的頂點坐標.【詳解】解:由題知:拋物線的頂點坐標為:故選:D.【點睛】本題主要考查的二次函數的頂點式的特點以及頂點坐標的求法,掌握二次函數的頂點式是解題的關鍵.10、D【分析】根據反比例函數系數k的幾何意義,由△POM的面積為2,可知|k|=2,再結合圖象所在的象限,確定k的值,則函數的解析式即可求出.【詳解】解:△POM的面積為2,S=|k|=2,,又圖象在第四象限,k<0,k=-4,反比例函數的解析式為:.故選D.【點睛】本題考查了反比例函數的比例系數k與其圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即S=|k|.二、填空題(每小題3分,共24分)11、【分析】由正方形的性質易證△ABC∽△FEC,可設BC=x,只需求出BC即可求出圖中陰影部分的面積.【詳解】如圖所示:設BC=x,則CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴=,∴=解得x=,∴陰影部分面積為:S△ABC=××1=,故答案為:.【點睛】本題主要考查正方形的性質及三角形的相似,本題要充分利用正方形的特殊性質.利用比例的性質,直角三角形的性質等知識點的理解即可解答.12、【分析】延長DE交AC于點O,延長BC交DE的延長線于點F,然后根據旋轉的性質分別求出∠EAC=55°,∠AED=∠ACB,再根據對頂角相等,可得出∠DFB=∠EAC=55°.【詳解】解:延長DE交AC于點O,延長BC交DE的延長線于點F由題意可得:∠EAC=55°,∠AED=∠ACB∴∠AEF=∠ACF又∵∠AOE=∠FOC∴∠DFB=∠EAC=55°故答案為:55°【點睛】本題考查旋轉的性質,掌握旋轉圖形對應角相等是本題的解題關鍵.13、25%【分析】設每次降價的百分比為x,根據前量80,后量45,列出方程,解方程即可得到答案.【詳解】設每次降價的百分比為x,,解得:x1=0.25=25%,x2=1.75(不合題意舍去)故答案為:25%.【點睛】此題考查一元二次方程的實際應用,正確理解百分率問題,代入公式:前量(1x)2=后量,即可解答此類問題.14、1【解析】試題分析:∵關于x的方程的一個根是1,∴1﹣3×1+m=0,解得,m=1,故答案為1.考點:一元二次方程的解.15、1【解析】先求出直線y=x+2與坐標軸的交點坐標,再由三角形的中位線定理求出CD,得到C點坐標.【詳解】解:令x=0,得y=x+2=0+2=2,

∴B(0,2),

∴OB=2,

令y=0,得0=x+2,解得,x=-6,

∴A(-6,0),

∴OA=OD=6,

∵OB∥CD,

∴CD=2OB=4,

∴C(6,4),

把c(6,4)代入y=(k≠0)中,得k=1,

故答案為:1.【點睛】本題考查了一次函數與反比例函數的綜合,需要掌握求函數圖象與坐標軸的交點坐標方法,三角形的中位線定理,待定系數法.本題的關鍵是求出C點坐標.16、6【分析】連接OD,根據垂徑定理,得出半徑OD的長和DE的長,然后根據勾股定理求出OE的長即可.【詳解】∵是⊙O的直徑,弦,垂足為E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本題答案為:6.【點睛】本題考查了垂徑定理和勾股定理的應用,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.17、-3<x<1【解析】試題分析:根據拋物線的對稱軸為x=﹣1,一個交點為(1,0),可推出另一交點為(﹣3,0),結合圖象求出y>0時,x的范圍.解:根據拋物線的圖象可知:拋物線的對稱軸為x=﹣1,已知一個交點為(1,0),根據對稱性,則另一交點為(﹣3,0),所以y>0時,x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點:二次函數的圖象.18、【分析】由圖象,推得AD=7,DC+BC=6,經過解直角三角形求得BC、DC及BD.再由勾股定理求AB.【詳解】過點B作BD⊥AC于點D由圖象可知,BM最小時,點M到達D點.則AD=7點M從點D到B路程為13-7=6在△DBC中,∠C=60°∴CD=2,BC=4則BD=2∴AB=故答案為:【點睛】本題是動點問題的函數圖象探究題,考查了解直角三角形的相關知識,數形結合時解題關鍵.三、解答題(共66分)19、(1)(2)或,證明見解析(3)【分析】(1)過B做BQ∥NC交AD延長線于Q,構造出全等三角形△BDQ≌△CDM(ASA)、相似三角形△ANM∽△ABQ,再利用全等和相似的性質即可得出結論;(2)延長AD至H,使AD=DH,連接CH,可得△ABD≌△HCD(SAS),進一步可證得,得到,然后證明,即可得到結論:;延長CM至Q,使QM=CM,連接AQ,延長至,使可得、四邊形為平行四邊形,進一步可證得,即可得到結論;(3)在(1)、(2)的基礎之上,用含的式子表示出、,從而得出.【詳解】(1)過B做BQ∥NC交AD延長線于Q,如圖:∵D為BC中點易得△BDQ≌△CDM(ASA)∴DQ=DM,∵M為AD中點,∴AM=DM=DQ,∵BQ∥NC,∴△ANM∽△ABQ,∴,∴;(2)①結論:,證明:延長AD至H,使AD=DH,連接CH,如圖:易得△ABD≌△HCD(SAS),∴∠H=∠BAH,∴AB∥HC,設AM=x,則AD=AC=2x,AH=4x,∴,,∴;∴,,∴,∴,∴,∵,∴,∴,∴;②結論:;證明:延長至,使,連接,延長至,使,如圖:則,則四邊形為平行四邊形,∴,,,,,,∴,∴,∴,∴,,∴,∴;(3)由(1)得,,∴,由(2)①得,∵∴,∴,∴,∵,∴,∴,∴.【點睛】本題考查了全等三角形的判定和性質、相似三角形的判定和性質,合理的添加輔助線是解題的關鍵.20、(1)證明見解析;(2)①sin∠ADG=;②CF=1.【分析】(1)由垂徑定理可得CE=DE,CD⊥AB,由等腰三角形的性質和圓內接四邊形的性質可得∠FGC=∠ADC=∠ACD=∠AGD;(2)①如圖,設AC與GD交于點M,證△GMC∽△AMD,設CM=x,則DM=3x,在Rt△AMD中,通過勾股定理求出x的值,即可求出AM的長,可求出sin∠ADG的值;②S四邊形ADCG=S△ADC+S△ACG,因為點G是上一動點,所以當點G在的中點時,△ACG的的底邊AC上的高最大,此時△ACG的面積最大,四邊形ADCG的面積也最大,分別證∠GAC=∠GCA,∠F=∠GCA,推出∠F=∠GAC,即可得出FC=AC=1.【詳解】證明:(1)∵AB是⊙O的直徑,弦CD⊥AB,∴CE=DE,CD⊥AB,∴AC=AD,∴∠ADC=∠ACD,∵四邊形ADCG是圓內接四邊形,∴∠ADC=∠FGC,∵∠AGD=∠ACD,∴∠FGC=∠ADC=∠ACD=∠AGD,∴∠FGC=∠AGD;(2)①如圖,設AC與GD交于點M,∵,∴∠GCM=∠ADM,又∵∠GMC=∠AMD,∴△GMC∽△AMD,∴===,設CM=x,則DM=3x,由(1)知,AC=AD,∴AC=1,AM=1﹣x,在Rt△AMD中,AM2+DM2=AD2,∴(1﹣x)2+(3x)2=12,解得,x1=0(舍去),x2=,∴AM=1﹣=,∴sin∠ADG===;②S四邊形ADCG=S△ADC+S△ACG,∵點G是上一動點,∴當點G在的中點時,△ACG的底邊AC上的高最大,此時△ACG的面積最大,四邊形ADCG的面積也最大,∴GA=GC,∴∠GAC=∠GCA,∵∠GCD=∠F+∠FGC,由(1)知,∠FGC=∠ACD,且∠GCD=∠ACD+∠GCA,∴∠F=∠GCA,∴∠F=∠GAC,∴FC=AC=1.【點睛】本題考查的是圓的有關性質、垂徑定理、解直角三角形等,熟練掌握圓的有關性質并靈活運用是解題的關鍵.21、(1)14;(2)1【分析】(1)用不合格品的數量除以總量即可求得抽到不合格品的概率;(2)利用獨立事件同時發生的概率等于兩個獨立事件單獨發生的概率的積即可計算;(3)根據頻率估計出概率,利用概率公式列式計算即可求得x的值.【詳解】解:(1)∵4件同型號的產品中,有1件不合格品,∴P(不合格品)=14(2)共有12種情況,抽到的都是合格品的情況有6種,P(抽到的都是合格品)=612=1(3)∵大量重復試驗后發現,抽到合格品的頻率穩定在0.95,∴抽到合格品的概率等于0.95,∴x+3x+4=0.95解得:x=1.【點睛】本題考查利用頻率估計概率;概率公式;列表法與樹狀圖法.22、見解析【分析】先根據平行四邊形的性質得,,則,再證明得到AE=CF.【詳解】證明:∵四邊形為平行四邊形∴,∴∵∴∴【點睛】本題考查了平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分.23、△GAD或△ECH或△GFH,證△GAD∽△DBE.見解析.【分析】根據已知及相似三角形的判定方法即可找到存在的相似三角形.【詳解】解:△ECH,△GFH,△GAD均與△DBE相似,任選一對即可.如選△GAD證明如下:證明:∵△ABC與△EFD均為等邊三角形,∴∠A=∠B=60°.又∵∠BDG=∠A+∠AGD,即∠BDE+60°=∠AGD+60°,∴∠BDE=∠AGD.∴△DBE∽△GAD.點睛:等量關系證明兩對應角相等是關鍵,考查了三角形的性質及相似三角形的判定.24、(2);(2)t=2或2;(3)().【分析】(2)由等邊三角形OAB得出∠ABC=92°,進而得出CO=OB=AB=OA=3,AC=6,求出BC即可;(2)需要分類討論:△PHQ∽△ABC和△QHP∽△ABC兩種情況;(3)過點Q作QN∥OB交x軸于點N,得出△AQN為等邊三角形,由OE∥QN,得出△POE∽△PNQ,以及,表示出OE的長,利用m=BE=OB﹣OE求出即可.【詳解】(2)如圖l,∵△AOB為等邊三角形,∴∠BAC=∠AOB=62,∵BC⊥AB,∴∠ABC=92°,∴∠ACB=32°,∠OBC=32°,∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如圖2,過點Q作x軸垂線,垂足為H,則QH=AQ?sin62°=.需要分類討論:當△PHQ∽△ABC時,,即:,解得,t=2.同理,當△QHP∽△ABC時,t=2.綜上所述,t=2或t=2;(3)如圖2,過點Q作QN∥OB交x軸于點N,∴∠QNA=∠BOA=62°=∠QAN,∴QN=QA,∴△AQN為等邊三角形,∴NQ=NA=AQ=3﹣t,∴ON=3﹣(3﹣t)=t,∴PN=t+t=2t,∴OE∥QN,∴△POE∽△PNQ,∴,∴,∴,∵EF∥x軸,∴∠BFE=∠BCO=∠FBE=32°,∴EF=BE,∴m=BE=OB﹣OE=(2<t<3).考點:相似形綜合題.25、(1)見解析;(2)的面積為;(3)、5、1、【分析】(1)先說明∠CEF=∠AFB和,即可證明∽;(2)過點作交與點,交于點,則;再結合矩形的性質,證得△FGE∽△AHF,得到AH=5GF;然后運用勾股定理求得GF的長,最后運用三角形的面積公式解答即可;(3)分點E在線段CD上和DC的延長線上兩種情況,然后分別再利用勾股定進行解答即可.【詳解】(1)解:∵矩形中,∴由折疊可得∵∴∴在和中∵,∴∽(2)解:過點作交與點,交于點,則∵矩形中,∴由折疊可得:,,∵∴∴在和中∵∴∽∴∴∴在中,∵∴∴∴的面積為(3)設DE=x,以點E、F、C為頂點的三角形是直角三角形,則:①當點E在線段CD上時,∠DAE<45°,∴∠AED>45°,由折疊性質得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,當∠EFC=90°時,如圖所示:由折疊性質可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴點A,F,C在同一條線上,即:點F在矩形的對角線AC上,在R

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論