《回歸分析的基本思想及其初步應(yīng)用》_第1頁(yè)
《回歸分析的基本思想及其初步應(yīng)用》_第2頁(yè)
《回歸分析的基本思想及其初步應(yīng)用》_第3頁(yè)
《回歸分析的基本思想及其初步應(yīng)用》_第4頁(yè)
《回歸分析的基本思想及其初步應(yīng)用》_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

3.1回歸分析的基本思想及其初步應(yīng)用問(wèn)題1:正方形的面積y與正方形的邊長(zhǎng)x之間的函數(shù)關(guān)系是y=x2確定性關(guān)系問(wèn)題2:某水田水稻產(chǎn)量y與施肥量x之間是否有一個(gè)確定性的關(guān)系?例如:在7塊并排、形狀大小相同的試驗(yàn)田上進(jìn)行施肥量對(duì)水稻產(chǎn)量影響的試驗(yàn),得到如下所示的一組數(shù)據(jù):施化肥量x15202530354045水稻產(chǎn)量y330345365405445450455復(fù)習(xí)變量之間的兩種關(guān)系1020304050500450400350300·······施化肥量x15202530354045水稻產(chǎn)量y330345365405445450455xy施化肥量水稻產(chǎn)量

自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系。定義:1):相關(guān)關(guān)系是一種不確定性關(guān)系;注對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的方法叫回歸分析。2):

現(xiàn)實(shí)生活中存在著大量的相關(guān)關(guān)系。

如:人的身高與年齡;產(chǎn)品的成本與生產(chǎn)數(shù)量;商品的銷售額與廣告費(fèi);家庭的支出與收入。等等探索:水稻產(chǎn)量y與施肥量x之間大致有何規(guī)律?1020304050500450400350300·······發(fā)現(xiàn):圖中各點(diǎn),大致分布在某條直線附近。探索2:在這些點(diǎn)附近可畫(huà)直線不止一條,哪條直線最能代表x與y之間的關(guān)系呢?施化肥量x15202530354045水稻產(chǎn)量y330345365405445450455xy散點(diǎn)圖施化肥量水稻產(chǎn)量1020304050500450400350300·······xy施化肥量水稻產(chǎn)量1、所求直線方程叫做回歸直線方程;相應(yīng)的直線叫做回歸直線。2、對(duì)兩個(gè)變量進(jìn)行的線性分析叫做線性回歸分析。回歸直線方程最小二乘法:稱為樣本點(diǎn)的中心。求回歸直線方程的步驟:(3)代入公式(4)寫(xiě)出直線方程為y=bx+a,即為所求的回歸直線方程。^i12345678910xi-1-2-3-4-553421yi-9-7-5-3-115379xiyi9141512551512149例1、觀察兩相關(guān)量得如下數(shù)據(jù):x-1-2-3-4-553421y-9-7-5-3-115379求兩變量間的回歸方程.解:列表:所求回歸直線方程為例2

從某大學(xué)中隨機(jī)選出8名女大學(xué)生,其身高和體重?cái)?shù)據(jù)如下表:編號(hào)12345678身高165165157170175165155170體重4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報(bào)她的體重的回歸方程,并預(yù)報(bào)一名身高為172cm的女大學(xué)生的體重。分析:由于問(wèn)題中要求根據(jù)身高預(yù)報(bào)體重,因此選取身高為自變量,體重為因變量.2.回歸方程:1.散點(diǎn)圖;探究?身高為172cm的女大學(xué)生的體重一定是60.316kg嗎?如果不是,其原因是什么?思考:產(chǎn)生隨機(jī)誤差項(xiàng)e的原因是什么?隨機(jī)誤差e的來(lái)源(可以推廣到一般):1、忽略了其它因素的影響:影響身高y的因素不只是體重x,可能還包括遺傳基因、飲食習(xí)慣、生長(zhǎng)環(huán)境等因素;2、用線性回歸模型近似真實(shí)模型所引起的誤差;3、身高y的觀測(cè)誤差。以上三項(xiàng)誤差越小,說(shuō)明我們的回歸模型的擬合效果越好。我們可以用下面的線性回歸模型來(lái)表示:y=bx+a+e,

(3)其中a和b為模型的未知參數(shù),e稱為隨機(jī)誤差。y=bx+a+e,E(e)=0,D(e)=

(4)

在線性回歸模型(4)中,隨機(jī)誤差e的方差越小,通過(guò)回歸直線(5)預(yù)報(bào)真實(shí)值y的精度越高。隨機(jī)誤差是引起預(yù)報(bào)值與真實(shí)值y之間的誤差的原因之一,其大小取決于隨機(jī)誤差的方差。另一方面,由于公式(1)和(2)中和為截距和斜率的估計(jì)值,它們與真實(shí)值a和b之間也存在誤差,這種誤差是引起預(yù)報(bào)值與真實(shí)值y之間誤差的另一個(gè)原因。函數(shù)模型與回歸模型之間的差別函數(shù)模型:回歸模型:可以提供選擇模型的準(zhǔn)則

線性回歸模型y=bx+a+e增加了隨機(jī)誤差項(xiàng)e,因變量y的值由自變量x和隨機(jī)誤差項(xiàng)e共同確定,即自變量x只能解析部分y的變化。

在統(tǒng)計(jì)中,我們也把自變量x稱為解析變量,因變量y稱為預(yù)報(bào)變量。所以,對(duì)于身高為172cm的女大學(xué)生,由回歸方程可以預(yù)報(bào)其體重為函數(shù)模型:回歸模型:我們可以用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸的效果,其計(jì)算公式是例2、在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對(duì)的回歸直線方程,并說(shuō)明擬合效果的好壞。價(jià)格x1416182022需求量Y1210753解:例2、在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對(duì)的回歸直線方程,并說(shuō)明擬合效果的好壞。價(jià)格x1416182022需求量Y1210753列出殘差表為0.994因而,擬合效果較好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.4相關(guān)系數(shù)r>0正相關(guān);r<0負(fù)相關(guān).通常,r>0.75,認(rèn)為兩個(gè)變量有很強(qiáng)的相關(guān)性.本例中,由上面公式r=0.798>0.75.如何描

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論