浙江省溫州實驗中學2023年數學九上期末教學質量檢測試題含解析_第1頁
浙江省溫州實驗中學2023年數學九上期末教學質量檢測試題含解析_第2頁
浙江省溫州實驗中學2023年數學九上期末教學質量檢測試題含解析_第3頁
浙江省溫州實驗中學2023年數學九上期末教學質量檢測試題含解析_第4頁
浙江省溫州實驗中學2023年數學九上期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩24頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省溫州實驗中學2023年數學九上期末教學質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.某種藥品原價為36元/盒,經過連續兩次降價后售價為25元/盒.設平均每次降價的百分率為x,根據題意所列方程正確的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=252.如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,點C和點M重合,點B、C(M)、N在同一直線上,令Rt△PMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設移動x秒后,矩形ABCD與△PMN重疊部分的面積為y,則y與x的大致圖象是()A. B. C. D.3.如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時針方向旋轉40°得到△ADE,點B經過的路徑為弧BD,是圖中陰影部分的面積為()A.π﹣6 B.π C.π﹣3 D.+π4.一元二次方程的解是()A. B. C., D.,5.已知是方程的一個根,則代數式的值等于()A.3 B.2 C.0 D.16.下列說法正確的是()A.對應邊都成比例的多邊形相似 B.對應角都相等的多邊形相似C.邊數相同的正多邊形相似 D.矩形都相似7.一元二次方程中的常數項是()A.-5 B.5 C.-6 D.18.已知二次函數y=-x2+2mx+2,當x<-2時,y的值隨x的增大而增大,則實數m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-29.如圖,AB是半圓O的直徑,弦AD、BC相交于點P,若∠DPB=α,那么等于()A.tanα B.sina C.cosα D.10.如圖,菱形的對角線,相交于點,過點作于點,連接,若,,則的長為()A.3 B.4 C.5 D.6二、填空題(每小題3分,共24分)11.如圖所示,等腰三角形,,,…,(為正整數)的一直角邊在軸上,雙曲線經過所有三角形的斜邊中點,,,…,,已知斜邊,則點的坐標為_________.12.如圖,點是反比例函數的圖象上一點,直線過點與軸交于點,與軸交于點.過點做軸于點,連接,若的面積為,則的面積為_______.13.一個不透明的袋中裝有除顏色外其余均相同的5個紅球和3個黃球,從中隨機摸出一個,則摸到黃球的概率是________.14.雙十一期間,榮昌重百推出有獎銷售促銷活動,消費達到800元以上得一次抽獎機會,李老師消費1000元后來到抽獎臺,臺上放著一個不透明抽獎箱,里面放有規格完全相同的四個小球,球上分別標有1,2,3,4四個數字,主持人讓李老師連續不放回抽兩次,每次抽取一個小球,如果兩個球上的數字均為奇數則可中獎,則李老師中獎的概率是__________.15.如圖,在平面直角坐標系中,函數和的圖象分別為直線,,過點(1,0)作軸的垂線交于點,過點作軸的垂線交于點,過點作軸的垂線交于點,過點作軸的垂線交于點,…依次進行下去,則點的坐標為_________.16.拋物線開口向下,且經過原點,則________.17.在中,若、滿足,則為________三角形.18.已知扇形半徑為5cm,圓心角為60°,則該扇形的弧長為________cm.三、解答題(共66分)19.(10分)某校體育組為了解全校學生“最喜歡的一項球類項目”,隨機抽取了部分學生進行調查,下面是根據調查結果繪制的不完整的統計圖.請你根據統計圖回答下列問題:(1)請補全條形統計圖(圖2);(2)在扇形統計圖中,“籃球”部分所對應的圓心角是____________度?(3)籃球教練在制定訓練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學中任選兩人進行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.20.(6分)如圖,點C在以AB為直徑的圓上,D在線段AB的延長線上,且CA=CD,BC=BD.(1)求證:CD與⊙O相切;(2)若AB=8,求圖中陰影部分的面積.21.(6分)如圖,一艘船由A港沿北偏東65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.求:(1)∠C的度數;(2)A,C兩港之間的距離為多少km.22.(8分)如圖,在平面直角坐標系中,點A的坐標為(m,m),點B的坐標為(n,﹣n),拋物線經過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C,已知實數m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.(1)求拋物線的解析式;(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側),連接OD、BD①當△OPC為等腰三角形時,求點P的坐標;②求△BOD面積的最大值,并寫出此時點D的坐標.23.(8分)2018年非洲豬瘟疫情暴發后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據統計:今年7月20日豬肉價格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.(1)問:今年年初豬肉的價格為每千克多少元?(2)某超市將進貨價為每千克65元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經調查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現銷售豬內每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?24.(8分)如圖,二次函數y=x2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C,且關于直線x=1對稱,點A的坐標為(﹣1,0).(1)求二次函數的表達式;(2)連接BC,若點P在y軸上時,BP和BC的夾角為15°,求線段CP的長度;(3)當a≤x≤a+1時,二次函數y=x2+bx+c的最小值為2a,求a的值.25.(10分)定義:連結菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.(1)判斷下列命題是真命題,還是假命題?①正方形是自相似菱形;②有一個內角為60°的菱形是自相似菱形.③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED.(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點.①求AE,DE的長;②AC,BD交于點O,求tan∠DBC的值.26.(10分)如圖,在平面直角坐標系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OA<OB).且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個根,線段AB的垂直平分線CD交AB于點C,交x軸于點D,點P是直線AB上一個動點,點Q是直線CD上一個動點.(1)求線段AB的長度:(2)過動點P作PF⊥OA于F,PE⊥OB于E,點P在移動過程中,線段EF的長度也在改變,請求出線段EF的最小值:(3)在坐標平面內是否存在一點M,使以點C、P、Q、M為頂點的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點M的坐標:若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】可先表示出第一次降價后的價格,那么第一次降價后的價格×(1﹣降低的百分率)=1,把相應數值代入即可求解.【詳解】解:第一次降價后的價格為36×(1﹣x),兩次連續降價后售價在第一次降價后的價格的基礎上降低x,為36×(1﹣x)×(1﹣x),則列出的方程是36×(1﹣x)2=1.故選:C.【點睛】考查由實際問題抽象出一元二次方程中求平均變化率的方法.若設變化前的量為a,變化后的量為b,平均變化率為x,則經過兩次變化后的數量關系為a(1±x)2=b.2、A【解析】分析:在Rt△PMN中解題,要充分運用好垂直關系和45度角,因為此題也是點的移動問題,可知矩形ABCD以每秒1cm的速度由開始向右移動到停止,和Rt△PMN重疊部分的形狀可分為下列三種情況,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根據重疊圖形確定面積的求法,作出判斷即可.詳解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由題意得:CM=x,分三種情況:①當0≤x≤2時,如圖1,邊CD與PM交于點E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此時矩形ABCD與△PMN重疊部分是△EMC,∴y=S△EMC=CM?CE=;故選項B和D不正確;②如圖2,當D在邊PN上時,過P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此時x=4,當2<x≤4時,如圖3,矩形ABCD與△PMN重疊部分是四邊形EMCD,過E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD?(DE+CM)==2x﹣2;③當4<x≤6時,如圖4,矩形ABCD與△PMN重疊部分是五邊形EMCGF,過E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故選項A正確;故選:A.點睛:此題是動點問題的函數圖象,有難度,主要考查等腰直角三角形的性質和矩形的性質的應用、動點運動問題的路程表示,注意運用數形結合和分類討論思想的應用.3、B【解析】根據AB=5,AC=3,BC=4和勾股定理的逆定理判斷三角形的形狀,根據旋轉的性質得到△AED的面積=△ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據扇形面積公式計算即可.【詳解】解:∵AB=5,AC=3,BC=4,∴△ABC為直角三角形,由題意得,△AED的面積=△ABC的面積,由圖形可知,陰影部分的面積=△AED的面積+扇形ADB的面積﹣△ABC的面積,∴陰影部分的面積=扇形ADB的面積=,故選B.【點睛】考查的是扇形面積的計算、旋轉的性質和勾股定理的逆定理,根據圖形得到陰影部分的面積=扇形ADB的面積是解題的關鍵.4、C【解析】用因式分解法解一元二次方程即可.【詳解】∴或∴,故選C.【點睛】本題主要考查一元二次方程的解,掌握解一元二次方程的方法是解題的關鍵.5、A【分析】根據題意,將代入方程得,移項即可得結果.【詳解】∵是方程的一個根,∴,∴,故選A.【點睛】本題考查一元二次方程的解,已知方程的根,只需將根代入方程即可.6、C【解析】試題分析:根據相似圖形的定義,對選項一一分析,排除錯誤答案.解:A、對應邊都成比例的多邊形,屬于形狀不唯一確定的圖形,故錯誤;B、對應角都相等的多邊形,屬于形狀不唯一確定的圖形,故錯誤;C、邊數相同的正多邊形,形狀相同,但大小不一定相同,故正確;D、矩形屬于形狀不唯一確定的圖形,故錯誤.故選C.考點:相似圖形.點評:本題考查相似變換的定義,即圖形的形狀相同,但大小不一定相同的是相似形.7、C【分析】將一元二次方程化成一般形式,即可得到常數項.【詳解】解:∵∴∴常數項為-6故選C.【點睛】本題主要考查了一元二次方程的一般形式,準確的化出一元二次方程的一般形式是解決本題的關鍵.8、C【解析】根據二次函數的性質,確定拋物線的對稱軸及開口方向得出函數的增減性,結合題意確定m值的范圍.【詳解】解:拋物線的對稱軸為直線∵,拋物線開口向下,∴當時,y的值隨x值的增大而增大,∵當時,y的值隨x值的增大而增大,∴,故選:C.【點睛】本題考查了二次函數的性質,主要利用了二次函數的增減性,由系數的符號特征得出函數性質是解答此題的關鍵.9、C【分析】連接BD得到∠ADB是直角,再利用兩三角形相似對應邊成比例即可求解.【詳解】連接BD,由AB是直徑得,∠ADB=.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故選C.10、A【分析】根據菱形面積的計算公式求得AC,再利用直角三角形斜邊中線的性質即可求得答案.【詳解】∵四邊形ABCD是菱形,OB=4,∴∵,∴,∴;∵AH⊥BC,∴.故選:A.【點睛】本題考查了菱形的性質及直角三角形斜邊的中線等于斜邊的一半的性質,根據菱形的面積公式:菱形的面積等于兩條對角線乘積的一半是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】先求出雙曲線的解析式,設=2,=2,分別求出和的值,從中找到規律表示出的值,據此可求得點的坐標.【詳解】解:∵,是等腰三角形,∴==4,∴的坐標是(-4,4),∴的坐標是(-2,2),∴雙曲線解析式為,設=2,則=2,∴的坐標是(-4-2,2),∴的坐標是(-4-,),∴(-4-)=-4,∴=(負值舍去),∴=,設=2,則=2,同理可求得=,∴=,……,依此類推=,∴==,∴=+++……+=4+++……+=∴的坐標是(,),故答案是:(,).【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.也考查了等腰直角三角形的性質.12、【分析】先由△BOC的面積得出①,再判斷出△BOC∽△ADC,得出②,聯立①②求出,即可得出結論.【詳解】設點A的坐標為,

∴,

∵直線過點A并且與兩坐標軸分別交于點B,C,

∴,∴,,

∵△BOC的面積是3,

∴,

∴,

∴①

∵AD⊥x軸,

∴OB∥AD,

∴△BOC∽△ADC,

∴,

∴,

∴②,

聯立①②解得,(舍)或,

∴.故答案為:.【點睛】本題是反比例函數與幾何的綜合題,主要考查了坐標軸上點的特點,反比例函數上點的特點,相似三角形的判定和性質,得出是解本題的關鍵.13、【分析】由題意根據概率的概念以及求概念公式進行分析即可求解.【詳解】解:由題意可得:一個不透明的袋中裝有除顏色外其余均相同的5個紅球和3個黃球,共8個,從中隨機摸出一個,則摸到黃球的概率是.故答案為:.【點睛】本題考查概率的求法,即如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.14、【分析】畫樹狀圖展示所有12種等可能的結果數,找出兩個球上的數字均為奇數的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:共有12種等可能的結果數,其中兩個球上的數字均為奇數的結果數為2,所以李老師中獎的概率=.故答案為:.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.15、【解析】根據一次函數圖象上點的坐標特征可得出點A1、A2、A3、A4、A5、A6、A7、A8等的坐標,根據坐標的變化找出變化規律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數)”,依此規律結合2019=504×4+3即可找出點A2019的坐標.【詳解】解:當x=1時,y=2,

∴點A1的坐標為(1,2);

當y=-x=2時,x=-2,

∴點A2的坐標為(-2,2);

同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,

∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),

A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數).

∵2019=504×4+3,

∴點A2019的坐標為(-2504×2+1,-2504×2+2),即(-21009,-21010).

故答案為(-21009,-21010).【點睛】本題考查一次函數圖象上點的坐標特征、正比例函數的圖象以及規律型中點的坐標,根據坐標的變化找出變化規律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數)”是解題的關鍵.16、【解析】把原點(0,0)代入y=(k+1)x2+k2﹣9,可求k,再根據開口方向的要求檢驗.【詳解】把原點(0,0)代入y=(k+1)x2+k2﹣9中,得:k2﹣9=0解得:k=±1.又因為開口向下,即k+1<0,k<﹣1,所以k=﹣1.故答案為:﹣1.【點睛】主要考查了二次函數圖象上的點與二次函數解析式的關系.要求掌握二次函數圖象的性質,并會利用性質得出系數之間的數量關系進行解題.17、直角【分析】先根據非負數的性質及特殊角的三角函數值求得∠A和∠B,即可作出判斷.【詳解】∵,∴,,∴,,∵,,∴∠A=30°,∠B=60°,

∴,

∴△ABC是直角三角形.

故答案為:直角.【點睛】本題考查了特殊角的三角函數值,非負數的性質及三角形的內角和定理,根據非負數的性質及特殊角的三角函數值求出∠A、∠B的度數,是解題的關鍵.18、【分析】直接利用弧長公式進行計算.【詳解】解:由題意得:=,故答案是:【點睛】本題考查了弧長公式,考查了計算能力,熟練掌握弧長公式是關鍵.三、解答題(共66分)19、(1)見解析;(2)144;(3)【分析】(1)先利用喜歡足球的人數和它所占的百分比計算出調查的總人數,再計算出喜歡乒乓球的人數,然后補全條形統計圖;

(2)用360°乘以喜歡籃球人數所占的百分比即可;

(3)畫樹狀圖展示所有12種等可能的結果數,再找出抽取的兩人恰好是甲和乙的結果數,然后根據概率公式求解.【詳解】(1)調查的總人數為8÷16%=50(人),

喜歡乒乓球的人數為50-8-20-6-2=14(人),補全條形統計圖如下:

(2)“籃球”部分所對應的圓心角=360×40%=144°;

(3)畫樹狀圖為:

共有12種等可能的結果數,其中抽取的兩人恰好是甲和乙的結果數為2,

所以抽取的兩人恰好是甲和乙的概率:.【點睛】本題考查了條形統計圖和扇形統計圖的綜合運用以及列表法與樹狀圖法,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.20、(1)見解析;(2)【分析】(1)連接OC,由圓周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性質得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,證出∠DCO=90°,則CD⊥OC,即可得出結論;

(2)證明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性質得出CD=OC=4,圖中陰影部分的面積=△OCD的面積-扇形OBC的面積,代入數據計算即可.【詳解】證明:連接OC,如圖所示:

∵AB是⊙O的直徑,

∴∠ACB=90°,即∠ACO+∠BCO=90°,

∵CA=CD,BC=BD,

∴∠A=∠D=∠BCD,

又∵OA=OC,

∴∠ACO=∠A,

∴∠ACO=∠BCD,

∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,

∴CD⊥OC,

∵OC是⊙O的半徑,

∴CD與⊙O相切;

(2)解:∵AB=8,

∴OC=OB=4,

由(1)得:∠A=∠D=∠BCD,

∴∠OBC=∠BCD+∠D=2∠D,

∵∠BOC=2∠A,

∴∠BOC=∠OBC,

∴OC=BC,

∵OB=OC,

∴OB=OC=BC,

∴∠BOC=60°,

∵∠OCD=90°,

∴∠D=90°-60°=30°,

∴CD=OC=4,

∴圖中陰影部分的面積=△OCD的面積-扇形OBC的面積=×4×4-=8-π.【點睛】本題考查了切線的判定、圓周角定理、等腰三角形的判定與性質、等邊三角形的判定與性質、含30°角的直角三角形的性質、扇形面積公式、三角形面積公式等知識;熟練掌握切線的判定和圓周角定理是解題的關鍵.21、(1)∠C=60°(2)AC=【分析】(1)根據方位角的概念確定∠ACB=40°+20°=60;(2)AB=30,過B作BE⊥AC于E,解直角三角形即可得到結論.【詳解】解:(1)如圖,在點C處建立方向標根據題意得,AF∥CM∥BD∴∠ACM=∠FAC,∠BCM=∠DBC∴∠ACB=∠ACM+∠BCM=40°+20°=60°,(2)∵AB=30,過B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30,∴AE=BE=AB=30km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=10km,

∴AC=AE+CE=30+10,∴A,C兩港之間的距離為(30+10)km,【點睛】本題考查了解直角三角形的應用,方向角問題,三角形的內角和,是基礎知識比較簡單.22、(1)拋物線的解析式為;(2)①P點坐標為P1()或P2()或P2();②D().【分析】(1)首先解方程得出A,B兩點的坐標,從而利用待定系數法求出二次函數解析式即可.(2)①首先求出AB的直線解析式,以及BO解析式,再利用等腰三角形的性質得出當OC=OP時,當OP=PC時,點P在線段OC的中垂線上,當OC=PC時分別求出x的值即可.②利用S△BOD=S△ODQ+S△BDQ得出關于x的二次函數,從而得出最值即可.【詳解】解:(1)解方程x2﹣2x﹣2=0,得x1=2,x2=﹣1.∵m<n,∴m=﹣1,n=2.∴A(﹣1,﹣1),B(2,﹣2).∵拋物線過原點,設拋物線的解析式為y=ax2+bx.∴,解得:.∴拋物線的解析式為.(2)①設直線AB的解析式為y=kx+b.∴,解得:.∴直線AB的解析式為.∴C點坐標為(0,).∵直線OB過點O(0,0),B(2,﹣2),∴直線OB的解析式為y=﹣x.∵△OPC為等腰三角形,∴OC=OP或OP=PC或OC=PC.設P(x,﹣x).(i)當OC=OP時,,解得(舍去).∴P1().(ii)當OP=PC時,點P在線段OC的中垂線上,∴P2().(iii)當OC=PC時,由,解得(舍去).∴P2().綜上所述,P點坐標為P1()或P2()或P2().②過點D作DG⊥x軸,垂足為G,交OB于Q,過B作BH⊥x軸,垂足為H.設Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ?OG+DQ?GH=DQ(OG+GH)==.∵0<x<2,∴當時,S取得最大值為,此時D().【點睛】本題考查的是二次函數綜合運用,涉及到一次函數、解一元二次方程、圖形的面積計算等,其中(2)要注意分類求解,避免遺漏.23、(1)今年年初豬肉的價格為每千克50元;(2)豬肉的售價應該下降3元.【分析】(1)設今年年初豬肉的價格為每千克元,根據今年7月20日豬肉的價格今年年初豬肉的價格上漲率),即可得出關于的一元一次方程,解之即可得出結論;(2)設豬肉的售價應該下降元,則每日可售出千克,根據總利潤每千克的利潤銷售數量,即可得出關于的一元二次方程,解之取其較大值即可得出結論.【詳解】解:(1)設今年年初豬肉的價格為每千克元,依題意,得:,解得:.答:今年年初豬肉的價格為每千克50元.(2)設豬肉的售價應該下降元,則每日可售出千克,依題意,得:,整理,得:,解得:,.讓顧客得到實惠,.答:豬肉的售價應該下降3元.【點睛】本題考查了一元一次方程的應用以及一元二次方程的應用,解題的關鍵是:(1)找準等量關系,正確列出一元一次方程;(2)找準等量關系,正確列出一元二次方程.24、(1)y=x2﹣2x﹣3;(2)CP的長為3﹣或3﹣3;(3)a的值為1﹣或2+.【解析】(1)先根據題意得出點B的坐標,再利用待定系數法求解可得;

(2)分點P在點C上方和下方兩種情況,先求出∠OBP的度數,再利用三角函數求出OP的長,從而得出答案;

(3)分對稱軸x=1在a到a+1范圍的右側、中間和左側三種情況,結合二次函數的性質求解可得.【詳解】(1)∵點A(﹣1,0)與點B關于直線x=1對稱,∴點B的坐標為(3,0),代入y=x2+bx+c,得:,解得,所以二次函數的表達式為y=x2﹣2x﹣3;(2)如圖所示:由拋物線解析式知C(0,﹣3),則OB=OC=3,∴∠OBC=45°,若點P在點C上方,則∠OBP=∠OBC﹣∠PBC=30°,∴OP=OBtan∠OBP=3×=,∴CP=3﹣;若點P在點C下方,則∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OBtan∠OBP′=3×=3,∴CP=3﹣3;綜上,CP的長為3﹣或3﹣3;(3)若a+1<1,即a<0,則函數的最小值為(a+1)2﹣2(a+1)﹣3=2a,解得a=1﹣(正值舍去);若a<1<a+1,即0<a<1,則函數的最小值為1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,則函數的最小值為a2﹣2a﹣3=2a,解得a=2+(負值舍去);綜上,a的值為1﹣或2+.【點睛】本題是二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、三角函數的運用、二次函數的圖象與性質及分類討論思想的運用.25、(1)見解析;(2)①AE=2,DE=4;②tan∠DBC=.【分析】(1)①證明△ABE≌△DCE(SAS),得出△ABE∽△DCE即可;②連接AC,由自相似菱形的定義即可得出結論;③由自相似菱形的性質即可得出結論;(2)①由(1)③得△ABE∽△DEA,得出,求出AE=2,DE=4即可;②過E作EM⊥AD于M,過D作DN⊥BC于N,則四邊形DMEN是矩形,得出DN=EM,DM=EN,∠M=∠N=90°,設AM=x,則EN=DM=x+4,由勾股定理得出方程,解方程求出AM=1,EN=DM=5,由勾股定理得出DN=EM==,求出BN=7,再由三角函數定義即可得出答案.【詳解】解:(1)①正方形是自相似菱形,是真命題;理由如下:如圖3所示:∵四邊形ABCD是正方形,點E是BC的中點,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形,故答案為:真命題;②有一個內角為60°的菱形是自相似菱形,是假命題;理由如下:如圖4所示:連接AC,∵四邊形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等邊三角形,∠DCE=120°,∵點E是BC的中點,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB與△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,則∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一個內角為60°的菱形不是自相似菱形,故答案為:假命題;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,是真命題;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE與△EDC不能相似,同理△AED與△EDC也不能相似,∵四邊形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,當∠AED=∠B時,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,故答案為:真命題;(2)①∵菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴∴AE2=BE?AD=2×4=8,∴AE=2,DE=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論