浙江省溫州市2023年數學九年級第一學期期末質量檢測模擬試題含解析_第1頁
浙江省溫州市2023年數學九年級第一學期期末質量檢測模擬試題含解析_第2頁
浙江省溫州市2023年數學九年級第一學期期末質量檢測模擬試題含解析_第3頁
浙江省溫州市2023年數學九年級第一學期期末質量檢測模擬試題含解析_第4頁
浙江省溫州市2023年數學九年級第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省溫州市2023年數學九年級第一學期期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如果一個扇形的弧長是π,半徑是6,那么此扇形的圓心角為()A.40° B.45° C.60° D.80°2.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉角度(單位:度)()近似滿足函數關系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數據,根據上述函數模型和數據,可推斷出此燃氣灶燒開一壺水最節省燃氣的旋鈕角度約為()A. B. C. D.3.下列事件中,必然事件是()A.拋一枚硬幣,正面朝上B.打開電視頻道,正在播放《今日視線》C.射擊運動員射擊一次,命中10環D.地球繞著太陽轉4.去年某校有1500人參加中考,為了了解他們的數學成績,從中抽取200名考生的數學成績,其中有60名考生達到優秀,那么該校考生達到優秀的人數約有()A.400名 B.450名 C.475名 D.500名5.如圖,是用一把直尺、含60°角的直角三角板和光盤擺放而成,點為60°角與直尺交點,點為光盤與直尺唯一交點,若,則光盤的直徑是().A. B. C.6 D.36.下列事件中,為必然事件的是()A.拋擲10枚質地均勻的硬幣,5枚正面朝上B.某種彩票的中獎概率為,那么買100張這種彩票會有10張中獎C.拋擲一枚質地均勻的骰子,朝上一面的數字不大于6D.打開電視機,正在播放戲曲節目7.的倒數是()A. B. C. D.8.如圖,在四邊形中,對角線,相交于點,且,.若要使四邊形為菱形,則可以添加的條件是()A. B. C. D.9.若反比例函數的圖像經過點,則下列各點在該函數圖像上的為()A. B. C. D.10.如圖是二次函數的部分圖象,則的解的情況為()A.有唯一解 B.有兩個解 C.無解 D.無法確定11.若式子在實數范圍內有意義,則的取值范圍是()A. B. C. D.12.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.二、填空題(每題4分,共24分)13.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.14.如圖,在正方形ABCD中,E為DC邊上的點,連接BE,將△BCE繞點C順時針方向旋轉90°得到△DCF,連接EF,若∠BEC=60°,則∠EFD的度數為_______度.15.如圖,在△ABC中,∠A=30°,∠B=45°,BC=cm,則AB的長為_____.16.若關于x的一元二次方程的一個根是0,則另一個根是________.17.sin245°+cos60°=____________.18.一枚材質均勻的骰子,六個面的點數分別是1,2,3,4,5,6,投這個骰子,擲的的點數大于4的概率是______________.三、解答題(共78分)19.(8分)已知等邊△ABC的邊長為2,(1)如圖1,在邊BC上有一個動點P,在邊AC上有一個動點D,滿足∠APD=60°,求證:△ABP~△PCD(2)如圖2,若點P在射線BC上運動,點D在直線AC上,滿足∠APD=120°,當PC=1時,求AD的長(3)在(2)的條件下,將點D繞點C逆時針旋轉120°到點D',如圖3,求△D′AP的面積.20.(8分)已知:如圖,一次函數的圖象與反比例函數的圖象交于A、B兩點,且點B的坐標為.(1)求反比例函數的表達式;(2)點在反比例函數的圖象上,求△AOC的面積;(3)在(2)的條件下,在坐標軸上找出一點P,使△APC為等腰三角形,請直接寫出所有符合條件的點P的坐標.21.(8分)在平面直角坐標系中,二次函數y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點,與y軸交于點C.(1)求這個二次函數的關系解析式,x滿足什么值時y﹤0?(2)點p是直線AC上方的拋物線上一動點,是否存在點P,使△ACP面積最大?若存在,求出點P的坐標;若不存在,說明理由(3)點M為拋物線上一動點,在x軸上是否存在點Q,使以A、C、M、Q為頂點的四邊形是平行四邊形?若存在,直接寫出點Q的坐標;若不存在,說明理由.22.(10分)如圖,一次函數y1=kx+b(k≠0)和反比例函數y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).(1)求一次函數與反比例函數的解析式;(2)根據圖象直接寫出y1>y2時,x的取值范圍.23.(10分)如圖,已知二次函數G1:y=ax2+bx+c(a≠0)的圖象過點(﹣1,0)和(0,3),對稱軸為直線x=1.(1)求二次函數G1的解析式;(2)當﹣1<x<2時,求函數G1中y的取值范圍;(3)將G1先向右平移3個單位,再向下平移2個單位,得到新二次函數G2,則函數G2的解析式是.(4)當直線y=n與G1、G2的圖象共有4個公共點時,直接寫出n的取值范圍.24.(10分)如圖,在△ABC中,∠A為鈍角,AB=25,AC=39,,求tanC和BC的長.

25.(12分)如圖,是的直徑,點在上,平分角交于,過作直線的垂線,交的延長線于,連接.(1)求證:;(2)求證:直線是的切線;(3)若,求的長.26.如圖,在△ABC中,BC=12,tanA=,∠B=30°,求AC的長和△ABC的面積.

參考答案一、選擇題(每題4分,共48分)1、A【解析】試題分析:∵弧長,∴圓心角.故選A.2、C【解析】根據已知三點和近似滿足函數關系y=ax2+bx+c(a≠0)可以大致畫出函數圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數據描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節省燃氣.故選:C,【點睛】本題考查了二次函數的應用,二次函數的圖像性質,熟練掌握二次函數圖像對稱性質,判斷對稱軸位置是解題關鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.3、D【分析】根據事件發生的可能性大小及必然事件的定義即可作出判斷.【詳解】解:A、拋一枚硬幣,正面朝上是隨機事件;B、打開電視頻道,正在播放《今日視線》是隨機事件;C、射擊運動員射擊一次,命中10環是隨機事件;D、地球繞著太陽轉是必然事件;故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定會發生的事件.不可能事件是指在一定條件下,一定不會發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.4、B【分析】根據已知求出該校考生的優秀率,再根據該校的總人數,即可求出答案.【詳解】∵抽取200名考生的數學成績,其中有60名考生達到優秀,∴該校考生的優秀率是:×100%=30%,∴該校達到優秀的考生約有:1500×30%=450(名);故選B.【點睛】此題考查了用樣本估計總體,關鍵是根據樣本求出優秀率,運用了樣本估計總體的思想.5、A【分析】設三角板與圓的切點為C,連接,由切線長定理得出、,根據可得答案.【詳解】解:設三角板與圓的切點為C,連接OA、OB,如下圖所示:由切線長定理知,∴,在中,∴∴光盤的直徑為,故選.【點睛】本題主要考查切線的性質,掌握切線長定理和解直角三角形的應用是解題關鍵.6、C【分析】根據必然事件的概念答題即可【詳解】A:拋擲10枚質地均勻的硬幣,概率為0.5,但是不一定5枚正面朝上,故A錯誤;B:概率是表示一個事件發生的可能性的大小,某種彩票的中獎概率為,是指買張這種彩票會有0.1的可能性中獎,故B錯誤;C:一枚質地均勻的骰子最大的數字是6,故C正確;D:.打開電視機,正在播放戲曲節目是隨機事件,故D錯誤.故本題答案為:C【點睛】本題考查了必然事件的概念7、A【分析】根據乘積為1的兩個數互為倒數進行解答即可.【詳解】解:∵×1=1,∴的倒數是1.故選A.【點睛】本題考查了倒數的概念,熟記倒數的概念是解答此題的關鍵.8、D【分析】根據對角線互相平分的四邊形是平行四邊形可得四邊形是平行四邊形,再根據菱形的判定定理和矩形的判定定理逐一分析即可.【詳解】解:∵在四邊形中,,∴四邊形是平行四邊形若添加,則四邊形是矩形,故A不符合題意;若添加,則四邊形是矩形,故B不符合題意;若添加,與菱形的對角線互相垂直相矛盾,故C不符合題意;若添加則四邊形是菱形,故D符合題意.故選D.【點睛】此題考查的是平行四邊形的判定、矩形的判定和菱形的判定,掌握平行四邊形的判定定理、矩形的判定定理和菱形的判定定理是解決此題的關鍵.9、C【分析】將點代入求出反比例函數的解析式,再對各項進行判斷即可.【詳解】將點代入得解得∴只有點在該函數圖象上故答案為:C.【點睛】本題考查了反比例函數的問題,掌握反比例函數的性質以及應用是解題的關鍵.10、C【分析】根據圖象可知拋物線頂點的縱坐標為-3,把方程轉化為,利用數形結合求解即可.【詳解】根據圖象可知拋物線頂點的縱坐標為-3,把轉化為拋物線開口向下有最小值為-3∴(-3)>(-4)即方程與拋物線沒有交點.即方程無解.故選C.【點睛】本題考查了數形結合的思想,由題意知道拋物線的最小值為-3是解題的關鍵.11、C【解析】直接利用二次根式的定義即可得出答案.【詳解】∵式子在實數范圍內有意義,∴x的取值范圍是:x>1.故選:C.【點睛】本題考查了二次根式有意義的條件,正確把握定義是解答本題的關鍵.12、B【分析】根據網格的特點求出三角形的三邊,再根據相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關鍵是熟知相似三角形的判定定理.二、填空題(每題4分,共24分)13、(0,).【解析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯立兩函數解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數與一次函數的交點問題;軸對稱-最短路線問題.14、15【分析】根據旋轉的性質知∠DFC=60°,再根據EF=CF,EC⊥CF知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【詳解】∵△DCF是△BCE旋轉以后得到的圖形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.【點睛】此題主要考查正方形的性質,解題的關鍵是熟知等腰直角三角形與正方形的性質.15、【分析】根據題意過點C作CD⊥AB,根據∠B=45°,得CD=BD,根據勾股定理和BC=得出BD,再根據∠A=30°,得出AD,進而分析計算得出AB即可.【詳解】解;過點C作CD⊥AB,交AB于D.∵∠B=45°,∴CD=BD,∵BC=,∴BD=,∵∠A=30°,∴tan30°=,∴AD===3,∴AB=AD+BD=.故答案為:.【點睛】本題考查解直角三角形,熟練應用三角函數的定義是解題的關鍵.16、1【解析】設x1,x2是關于x的一元二次方程x2?x+k=0的兩個根,∵關于x的一元二次方程x2?x+k=0的一個根是0,∴由韋達定理,得x1+x2=1,即x2=1,即方程的另一個根是1.故答案為1.17、1【分析】利用特殊三角函數值代入求解.【詳解】解:原式=【點睛】熟記特殊的三角函數值是解題的關鍵.18、【解析】先求出點數大于4的數,再根據概率公式求解即可.【詳解】在這6種情況中,擲的點數大于4的有2種結果,擲的點數大于4的概率為.故答案為:.【點睛】本題考查的是概率公式,熟記隨機事件的概率事件可能出現的結果數所有可能出現的結果數的商是解答此題的關鍵.三、解答題(共78分)19、(1)見解析;(2);(3)【分析】(1)先利用三角形的內角和得出∠BAP+∠APB=120°,再用平角得出∠APB+∠CPD=120°,進而得出∠BAP=∠CPD,即可得出結論;(2)先構造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,進而求出AP,再判斷出△ACP∽∠APD,得出比例式即可得出結論;(3)先求出CD,進而得出CD',再構造出直角三角形求出D'H,進而得出D'G,再求出AM,最后用面積差即可得出結論.【詳解】解:(1)∵△ABC是等邊三角形,∴∠B=∠C=60°,在△ABP中,∠B+∠APB+∠BAP=180°,∴∠BAP+∠APB=120°,∵∠APB+∠CPD=180°﹣∠APD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;(2)如圖2,過點P作PE⊥AC于E,∴∠AEP=90°,∵△ABC是等邊三角形,∴AC=2,∠ACB=60°,∴∠PCE=60°,在Rt△CPE中,CP=1,∠CPE=90°﹣∠PCE=30°,∴CE=CP=,根據勾股定理得,PE=,在Rt△APE中,AE=AC+CE=2+=,根據勾股定理得,AP2=AE2+PE2=7,∵∠ACB=60°,∴∠ACP=120°=∠APD,∵∠CAP=∠PAD,∴△ACP∽△APD,∴,∴AD==;(3)如圖3,由(2)知,AD=,∵AC=2,∴CD=AD﹣AC=,由旋轉知,∠DCD'=120°,CD'=CD=,∵∠DCP=60°,∴∠ACD'=∠DCP=60°,過點D'作D'H⊥CP于H,在Rt△CHD'中,CH=CD'=,根據勾股定理得,D'H=CH=,過點D'作D'G⊥AC于G,∵∠ACD'=∠PCD',∴D'G=D'H=(角平分線定理),∴S四邊形ACPD'=S△ACD'+S△PCD'=AC?D'G+CP?DH'=×2×+×1×=,過點A作AM⊥BC于M,∵AB=AC,∴BM=BC=1,在Rt△ABM中,根據勾股定理得,AM=BM=,∴S△ACP=CP?AM=×1×=,∴S△D'AP=S四邊形ACPD'﹣S△ACP=﹣=.【點睛】此題主要考查四邊形綜合,解題的關鍵是熟知等邊三角形的性質、旋轉的特點及相似三角形的判定與性質、勾股定理的應用.20、(1);(2);(3)(-1,0)、(0,0)、(0,1).【詳解】(1)一次函數的圖象過點B,∴∴點B坐標為∵反比例函數的圖象經過點B反比例函數表達式為(2)設過點A、C的直線表達式為,且其圖象與軸交于點D∵點在反比例函數的圖象上∴∴點C坐標為∵點B坐標為∴點A坐標為解得:過點A、C的直線表達式為∴點D坐標為∴(3)①當點P在x軸上時,設P(m,0)∵AC=,AP=,CP=,∴=或=,解得:m=0或-1②當點P在y軸上時,設P(0,n),∵AC=,AP=,CP=,∴=或=解得:n=0或1綜上所述:點P的坐標可能為、、21、(1),或;(2)P;(3)【分析】(1)將點A(﹣3,0),B(1,0)帶入y=ax2+bx+2得到二元一次方程組,解得即可得出函數解析式;又從圖像可以看出x滿足什么值時y﹤0;(2)設出P點坐標,利用割補法將△ACP面積轉化為,帶入各個三角形面積算法可得出與m之間的函數關系,分析即可得出面積的最大值;(3)分兩種情況討論,一種是CM平行于x軸,另一種是CM不平行于x軸,畫出點Q大概位置,利用平行四邊形性質即可得出關于點Q坐標的方程,解出即可得到Q點坐標.【詳解】解:(1)將A(﹣3,0),B(1,0)兩點帶入y=ax2+bx+2可得:解得:∴二次函數解析式為.由圖像可知,當或時y﹤0;綜上:二次函數解析式為,當或時y﹤0;(2)設點P坐標為,如圖連接PO,作PM⊥x軸于M,PN⊥y軸于N.PM=,PN=,AO=3.當時,,所以OC=2,∵∴函數有最大值,當時,有最大值,此時;所以存在點,使△ACP面積最大.(3)存在,假設存在點Q使以A、C、M、Q為頂點的四邊形是平行四邊形①若CM平行于x軸,如下圖,有符合要求的兩個點此時=∵CM∥x軸,∴點M、點C(0,2)關于對稱軸對稱,∴M(﹣2,2),∴CM=2.由=;②若CM不平行于x軸,如下圖,過點M作MG⊥x軸于點G,易證△MGQ≌△COA,得QG=OA=3,MG=OC=2,即.設M(x,﹣2),則有,解得:.又QG=3,∴,∴綜上所述,存在點P使以A、C、M、Q為頂點的四邊形是平行四邊形,Q點坐標為:.【點睛】本題考查二次函數與幾何綜合題目,涉及到用待定系數法求二次函數解析式,通過函數圖像得出關于二次函數不等式的解集,平面直角坐標系中三角形面積的計算通常利用割補法,并且將所要求得點的坐標設出來,得出相關方程;在解答(3)的時候注意先畫出大概圖像再利用平行四邊形性質進行計算和分析.22、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【分析】(1)把點A坐標代入反比例函數求出k的值,也就求出了反比例函數解析式,再把點B的坐標代入反比例函數解析式求出a的值,得到點B的坐標,然后利用待定系數法即可求出一次函數解析式;(2)找出直線在一次函數圖形的上方的自變量x的取值即可.【詳解】解:(1)把點A(﹣1,6)代入反比例函數(m≠0)得:m=﹣1×6=﹣6,∴.將B(a,﹣2)代入得:,a=1,∴B(1,﹣2),將A(﹣1,6),B(1,﹣2)代入一次函數y1=kx+b得:,∴,∴;(2)由函數圖象可得:x<﹣1或0<x<1.【點睛】本題考查反比例函數與一次函數的交點問題,利用數形結合思想解題是本題的關鍵.23、(1)二次函數G1的解析式為y=﹣x2+2x+3;(2)0<y≤4;(3)y=﹣(x﹣4)2+2;(4)n的取值范圍為<n<2或n<.【分析】(1)由待定系數法可得根據題意得解得,則G1的解析式為y=﹣x2+2x+3;(2)將解析式化為頂點式,即y=﹣(x﹣1)2+4,當x=﹣1時,y=0;x=2時,y=3;而拋物線的頂點坐標為(1,4),且開口向下,所以當﹣1<x<2時,0<y≤4;(3)G1先向右平移3個單位,再向下平移2個單位,得到新二次函數G2,則函數G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案為y=﹣(x﹣4)2+2;(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由圖象可知當直線y=n與G1、G2的圖象共有4個公共點時,n的取值范圍為<n<2或n<.【詳解】解:(1)根據題意得解得,所以二次函數G1的解析式為y=﹣x2+2x+3;(2)因為y=﹣(x﹣1)2+4,所以拋物線的頂點坐標為(1,4);當x=﹣1時,y=0;x=2時,y=3;而拋物線的頂點坐標為(1,4),且開口向下,所以當﹣1<x<2時,0<y≤4;(3)G1先向右平移3個單位,再向下平移2個單位,得到新二次函數G2,則函數G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案為y=﹣(x﹣4)2+2.(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由圖象可知當直線y=n與G1、G2的圖象共有4個公共點時,n的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論