




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆上海市虹口區復興高級中學高一數學第二學期期末學業質量監測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用數學歸納法證明n+1n+2?n+n=-2A.2k+1 B.22k+1 C.2k+1k+12.對于一個給定的數列,定義:若,稱數列為數列的一階差分數列;若,稱數列為數列的二階差分數列.若數列的二階差分數列的所有項都等于,且,則()A.2018 B.1009 C.1000 D.5003.下列命題中正確的是()A.如果兩條直線都平行于同一個平面,那么這兩條直線互相平行B.過一條直線有且只有一個平面與已知平面垂直C.如果一條直線平行于一個平面內的一條直線,那么這條直線平行于這個平面D.如果兩條直線都垂直于同一平面,那么這兩條直線共面4.某個命題與自然數有關,且已證得“假設時該命題成立,則時該命題也成立”.現已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立5.若直線y=x+b與曲線有公共點,則b的取值范圍是A.B.C.D.6.執行如圖所示的程序框圖,若輸入,則輸出的數等于()A. B. C. D.7.如圖,在正方體,點在線段上運動,則下列判斷正確的是()①平面平面②平面③異面直線與所成角的取值范圍是④三棱錐的體積不變A.①② B.①②④ C.③④ D.①④8.閱讀如圖所示的算法框圖,輸出的結果S的值為A.8 B.6 C.5 D.49.已知數列滿足,則()A.10 B.20 C.100 D.20010.若向量,且,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某校高一、高二、高三分別有學生1600名、1200名、800名,為了解該校高中學生的牙齒健康狀況,按各年級的學生數進行分層抽樣,若高三抽取20名學生,則高一、高二共抽取的學生數為.12.在中角所對的邊分別為,若則___________13.在平面直角坐標系xOy中,若直線與直線平行,則實數a的值為______.14.一個社會調查機構就某地居民收入調查了10000人,并根據所得數據畫出了如圖所示的頻率分布直方圖,現要從這10000人中再用分層抽樣的方法抽出100人作進一步調查,則月收入在(元)內的應抽出___人.15.在上定義運算,則不等式的解集為_____.16.數列的前項和為,若數列的各項按如下規律排列:,,,,,,,,,,…,,,…,,…有如下運算和結論:①;②數列,,,,…是等比數列;③數列,,,,…的前項和為;④若存在正整數,使,,則.其中正確的結論是_____.(將你認為正確的結論序號都填上)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數,若,且,,求滿足條件的,.18.某工廠要制造A種電子裝置45臺,B種電子裝置55臺,需用薄鋼板給每臺裝置配一個外殼,已知薄鋼板的面積有兩種規格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個和5個,乙種薄鋼板每張面積3m2,可做A、B的外殼分別為6個和6個,求兩種薄鋼板各用多少張,才能使總的面積最小.19.已知,函數.(1)當時,解不等式;(2)若對,不等式恒成立,求a的取值范圍.20.不等式(1)若不等式的解集為或,求的值(2)若不等式的解集為,求的取值范圍21.如圖,圓錐中,是圓的直徑,是底面圓上一點,且,點為半徑的中點,連.(Ⅰ)求證:平面;(Ⅱ)當是邊長為4的正三角形時,求點到平面的距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
要分清起止項,以及相鄰兩項的關系,由此即可分清增加的代數式?!绢}目詳解】當n=k時,左邊=k+1當n=k+1時,左邊====k+1∴從k到k+1,左邊需要增乘的代數式為22k+1【題目點撥】本題主要考查學生如何理解數學歸納法中的遞推關系。2、C【解題分析】
根據題目給出的定義,分析出其數列的特點為等差數列,利用等差數列求解.【題目詳解】依題意知是公差為的等差數列,設其首項為,則,即,利用累加法可得,由于,即解得,,故.選C.【題目點撥】本題考查新定義數列和等差數列,屬于難度題.3、D【解題分析】
利用定理及特例法逐一判斷即可。【題目詳解】解:如果兩條直線都平行于同一個平面,那么這兩條直線相交、平行或異面,故A不正確;過一條直線有且只有一個平面與已知平面垂直,不正確.反例:如果該直線本身就垂直于已知平面的話,那么可以找到無數個平面與已知平面垂直,故B不正確;如果這兩條直線都在平面內且平行,那么這直線不平行于這個平面,故C不正確;如果兩條直線都垂直于同一平面,則這兩條直線平行,所以這兩條直線共面,故D正確.故選:D.【題目點撥】本題主要考查了線線平行的判定,面面垂直的判定,線面平行的判定,線面垂直的性質,考查空間思維能力,屬于中檔題。4、C【解題分析】
寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結合原命題與逆否命題的真假性一致進行判斷.【題目詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【題目點撥】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.5、C【解題分析】
試題分析:如圖所示:曲線即(x-2)2+(y-3)2=4(-1≤y≤3),表示以A(2,3)為圓心,以2為半徑的一個半圓,直線與圓相切時,圓心到直線y=x+b的距離等于半徑2,可得=2,∴b=1+2,b=1-2當直線過點(4,3)時,直線與曲線有兩個公共點,此時b=-1結合圖象可得≤b≤3故答案為C6、B【解題分析】
模擬執行循環體的過程,即可得到結果.【題目詳解】根據程序框圖,模擬執行如下:,滿足,,滿足,,滿足,,不滿足,輸出.故選:B.【題目點撥】本題考查程序框圖中循環體的執行,屬基礎題.7、B【解題分析】
①連接DB1,容易證明DB1⊥面ACD1,從而可以證明面面垂直;②連接A1B,A1C1容易證明平面BA1C1∥面ACD1,從而由線面平行的定義可得;③分析出A1P與AD1所成角的范圍,從而可以判斷真假;④=,C到面AD1P的距離不變,且三角形AD1P的面積不變;【題目詳解】對于①,連接DB1,根據正方體的性質,有DB1⊥面ACD1,DB1?平面PB1D,從而可以證明平面PB1D⊥平面ACD1,正確.②連接A1B,A1C1容易證明平面BA1C1∥面ACD1,從而由線面平行的定義可得A1P∥平面ACD1,正確.③當P與線段BC1的兩端點重合時,A1P與AD1所成角取最小值,當P與線段BC1的中點重合時,A1P與AD1所成角取最大值,故A1P與AD1所成角的范圍是,錯誤;④=,C到面AD1P的距離不變,且三角形AD1P的面積不變.∴三棱錐A﹣D1PC的體積不變,正確;正確的命題為①②④.故選B.【題目點撥】本題考查空間點、線、面的位置關系,空間想象能力,中檔題.8、B【解題分析】
判斷框,即當執行到時終止循環,輸出.【題目詳解】初始值,代入循環體得:,,,輸出,故選A.【題目點撥】本題由于循環體執行的次數較少,所以可以通過列舉每次執行后的值,直到循環終止,從而得到的輸出值.9、C【解題分析】
由題可得數列是以為首相,為公差的等差數列,求出數列的通項公式,進而求出【題目詳解】因為,所以數列是以為首項,為公差的等差數列,所以,則【題目點撥】本題考查由遞推公式證明數列是等差數列以及等差數列的通項公式,屬于一般題.10、B【解題分析】
根據坐標形式下向量的平行對應的等量關系,即可計算出的值,再根據坐標形式下向量的加法即可求解出的坐標表示.【題目詳解】因為且,所以,所以,所以.故選:B.【題目點撥】本題考查根據坐標形式下向量的平行求解參數以及向量加法的坐標運算,難度較易.已知,若則有.二、填空題:本大題共6小題,每小題5分,共30分。11、70【解題分析】設高一、高二抽取的人數分別為,則,解得.【考點】分層抽樣.12、【解題分析】,;由正弦定理,得,解得.考點:正弦定理.13、1【解題分析】
由,解得,經過驗證即可得出.【題目詳解】由,解得.經過驗證可得:滿足直線與直線平行,則實數.故答案為:1.【題目點撥】本題考查直線的平行與斜率之間的關系,考查推理能力與計算能力,屬于基礎題.14、25【解題分析】由直方圖可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分層抽樣應抽出人.故答案為25.15、【解題分析】
根據定義運算,把化簡得,求出其解集即可.【題目詳解】因為,所以,即,得,解得:故答案為:.【題目點撥】本題考查新定義,以及解一元二次不等式,考查運算的能力,屬于基礎題.16、①③④【解題分析】
根據題中所給的條件,將數列的項逐個寫出,可以求得,將數列的各項求出,可以發現其為等差數列,故不是等比數列,利用求和公式求得結果,結合條件,去挖掘條件,最后得到正確的結果.【題目詳解】對于①,前24項構成的數列是,所以,故①正確;對于②,數列是,可知其為等差數列,不是等比數列,故②不正確;對于③,由上邊結論可知是以為首項,以為公比的等比數列,所以有,故③正確;對于④,由③知,即,解得,且,故④正確;故答案是①③④.【題目點撥】該題考查的是有關數列的性質以及對應量的運算,解題的思想是觀察數列的通項公式,理解項與和的關系,認真分析,仔細求解,從而求得結果.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、,【解題分析】
利用三角恒等變換,化簡的解析式,從而得出結論.【題目詳解】解:,∴,待定系數,可得,又,∴,∴,.【題目點撥】本題主要考查三角恒等變換,屬于基礎題.18、甲、乙兩種薄鋼板各5張,能保證制造A、B的兩種外殼的用量,同時又能使用料總面積最?。窘忸}分析】
本題可先將甲種薄鋼板設為x張,乙種薄鋼板設為y張,然后根據題意,得出兩個不等式關系,也就是3x+6y≥45、5x+6y≥55以及薄鋼板的總面積是z=2x+3y,然后通過線性規劃畫出圖像并求出總面積z=2x+3y的最小值,最后得出結果.【題目詳解】設甲種薄鋼板x張,乙種薄鋼板y張,則可做A種產品外殼3x+6y個,B種產品外殼5x+6y個,由題意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄鋼板的總面積是可行域的陰影部分如圖所示,其中l1:3x+6y=45、l2:因目標函數z=2x+3y在可行域上的最小值在區域邊界的A5此時z的最小值為2×5+3×5=25即甲、乙兩種薄鋼板各5張,能保證制造A、【題目點撥】(1)利用線性規劃求目標函數最值的步驟①作圖:畫出約束條件所確定的平面區域和目標函數所表示的平面直角坐標系中的任意一條直線l;②平移:將l平行移動,以確定最優解所對應的點的位置.有時需要進行目標函數l和可行域邊界的斜率的大小比較;③求值:解有關方程組求出最優解的坐標,再代入目標函數,求出目標函數的最值.(2)用線性規劃解題時要注意z的幾何意義.19、(1)或;(2)或.【解題分析】
(1)代入,把項都移到左邊,合并同類項再因式分解,即可得到本題答案;(2)等價于,考慮的圖象不在圖象的上方,利用數形結合的方法,即可得到本題答案.【題目詳解】(1)當時,由得,即,解得,或,所以,所求不等式的解集為或;(2)等價于,所以當時,的圖象在圖象的下方,所以或所以,,或.【題目點撥】本題主要考查一元二次不等式以及利用數形結合的方法解決不等式的恒成立問題.20、(1);(2)【解題分析】
(1)根據一元二次不等式的解和對應一元二次方程根的關系,求得的值.(2)利用一元二次不等式解集為的條件列不等式組,解不等式組求得的取值范圍.【題目詳解】(1)由于不等式的解集為或,所以,解得.(2)由于不等式的解集為,故,解得.故的取值范圍是.【題目點撥】本小題主要考查一元二次不等式的解與對應一元二次方程根的關系,考查一元二次不等式恒成立問題的求解策略,屬于基礎題.21、(Ⅰ)見證明;(Ⅱ)【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全方位的知識整合特許金融分析師考試試題及答案
- 清晰導航項目管理考試復習思路試題及答案
- 2025年注冊會計師復習內容的變化與趨勢試題及答案
- 敏捷實踐在項目中的應用試題及答案
- 2025年金融危機應對策略試題及答案
- 企業發展規劃財務試題及答案
- 寧夏回族自治區長慶高級中學2024-2025學年高考語文三模試卷含解析
- 微生物檢驗行業標準試題及答案
- 2025年注冊會計師行業的創新思考與試題及答案
- 行業研究與個股選擇的試題及答案
- 2025年安徽銅陵市醫保局招聘編外聘用人員2人歷年自考難、易點模擬試卷(共500題附帶答案詳解)
- 2025年吉林工程職業學院單招職業技能考試題庫附答案
- 日語專業的畢業論文
- 2025年鄭州科技學院單招職業技能測試題庫含答案
- 膏方基本知識
- 卓有成效的管理知到課后答案智慧樹章節測試答案2025年春青島黃海學院
- 非遺藍染中國非遺文化藍染工藝介紹課件
- 《如何科學減重》課件
- 第1課時 收獲的季節(教學設計)-2024-2025學年一年級上冊數學北師大版
- 【博觀研究院】2025年跨境進口保健品市場分析報告
- 牛奶的工藝流程
評論
0/150
提交評論