山東省淄博市淄川中學2024年高三上數學期末學業質量監測模擬試題含解析_第1頁
山東省淄博市淄川中學2024年高三上數學期末學業質量監測模擬試題含解析_第2頁
山東省淄博市淄川中學2024年高三上數學期末學業質量監測模擬試題含解析_第3頁
山東省淄博市淄川中學2024年高三上數學期末學業質量監測模擬試題含解析_第4頁
山東省淄博市淄川中學2024年高三上數學期末學業質量監測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省淄博市淄川中學2024年高三上數學期末學業質量監測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數有且只有4個不同的零點,則實數的取值范圍是()A. B. C. D.2.執行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.3.要得到函數的圖象,只需將函數的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度4.的展開式中的系數為()A. B. C. D.5.等腰直角三角形的斜邊AB為正四面體側棱,直角邊AE繞斜邊AB旋轉,則在旋轉的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個位置,使得;(3)設二面角的平面角為,則;(4)AE的中點M與AB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.其中,正確說法的個數是()A.1 B.2 C.3 D.46.在中,,分別為,的中點,為上的任一點,實數,滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.7.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象8.已知集合A,則集合()A. B. C. D.9.已知與分別為函數與函數的圖象上一點,則線段的最小值為()A. B. C. D.610.已知點、.若點在函數的圖象上,則使得的面積為的點的個數為()A. B. C. D.11.近年來,隨著網絡的普及和智能手機的更新換代,各種方便的相繼出世,其功能也是五花八門.某大學為了調查在校大學生使用的主要用途,隨機抽取了名大學生進行調查,各主要用途與對應人數的結果統計如圖所示,現有如下說法:①可以估計使用主要聽音樂的大學生人數多于主要看社區、新聞、資訊的大學生人數;②可以估計不足的大學生使用主要玩游戲;③可以估計使用主要找人聊天的大學生超過總數的.其中正確的個數為()A. B. C. D.12.已知函數,其圖象關于直線對稱,為了得到函數的圖象,只需將函數的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.14.甲,乙兩隊參加關于“一帶一路”知識競賽,甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,若兩隊各出一名隊員進行比賽,則出場的兩名運動員編號相同的概率為______.15.設為等比數列的前項和,若,且,,成等差數列,則.16.我國古代名著《張丘建算經》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個四棱錐下底邊長為二丈,高三丈;現從上面截取一段,使之成為正四棱臺狀方亭,且四棱臺的上底邊長為六尺,則該正四棱臺的高為________尺,體積是_______立方尺(注:1丈=10尺).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-4:坐標系與參數方程已知曲線的參數方程是(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.18.(12分)已知函數.(1)求函數的最小正周期以及單調遞增區間;(2)已知,若,,,求的面積.19.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.20.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.21.(12分)已知各項均為正數的數列的前項和為,滿足,,,,恰為等比數列的前3項.(1)求數列,的通項公式;(2)求數列的前項和為;若對均滿足,求整數的最大值;(3)是否存在數列滿足等式成立,若存在,求出數列的通項公式;若不存在,請說明理由.22.(10分)已知函數f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數x的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由是偶函數,則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數性質的應用以及根據零點個數確定參數的取值范圍,基礎題.2、B【解析】

運行程序,依次進行循環,結合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環后,,第二次循環后,,第三次循環后,,第四次循環后,,所有后面的循環具有周期性,周期為3,當時,再次循環輸出的,,此時,循環結束,輸出,故選:B【點睛】本題主要考查程序框圖的相關知識,經過幾次循環找出規律是關鍵,屬于基礎題型.3、D【解析】

先將化為,根據函數圖像的平移原則,即可得出結果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數的平移,熟記函數平移原則即可,屬于基礎題型.4、C【解析】由題意,根據二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數為.故選C.點睛:此題主要考查二項式定理的通項公式的應用,以及組合數、整數冪的運算等有關方面的知識與技能,屬于中低檔題,也是常考知識點.在二項式定理的應用中,注意區分二項式系數與系數,先求出通項公式,再根據所求問題,通過確定未知的次數,求出,將的值代入通項公式進行計算,從而問題可得解.5、C【解析】

解:對于(1),當CD⊥平面ABE,且E在AB的右上方時,E到平面BCD的距離最大,當CD⊥平面ABE,且E在AB的左下方時,E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對于(2),連接DE,若存在某個位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進一步可得AE=DE,此時E﹣ABD為正三棱錐,故(2)正確;對于(3),取AB中點O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉,則在旋轉的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對于(4)AE的中點M與AB的中點N連線交平面BCD于點P,P到BC的距離為:dP﹣BC,因為<1,所以點P的軌跡為橢圓.(4)正確.故選:C.點睛:該題考查的是有關多面體和旋轉體對應的特征,以幾何體為載體,考查相關的空間關系,在解題的過程中,需要認真分析,得到結果,注意對知識點的靈活運用.6、D【解析】

根據三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.7、D【解析】

利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.8、A【解析】

化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.9、C【解析】

利用導數法和兩直線平行性質,將線段的最小值轉化成切點到直線距離.【詳解】已知與分別為函數與函數的圖象上一點,可知拋物線存在某條切線與直線平行,則,設拋物線的切點為,則由可得,,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導數的幾何意義的應用,以及點到直線的距離公式的應用,考查轉化思想和計算能力.10、C【解析】

設出點的坐標,以為底結合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關于的方程,求出方程的解,即可得出結論.【詳解】設點的坐標為,直線的方程為,即,設點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應用,考查運算求解能力,屬于中等題.11、C【解析】

根據利用主要聽音樂的人數和使用主要看社區、新聞、資訊的人數作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學生所占的比例,可判斷③的正誤.綜合得出結論.【詳解】使用主要聽音樂的人數為,使用主要看社區、新聞、資訊的人數為,所以①正確;使用主要玩游戲的人數為,而調查的總人數為,,故超過的大學生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學生人數為,因為,所以③正確.故選:C.【點睛】本題考查統計中相關命題真假的判斷,計算出相應的頻數與頻率是關鍵,考查數據處理能力,屬于基礎題.12、D【解析】

由函數的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數的圖象關于直線對稱,得,即,解得,所以,,故只需將函數的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用即可建立關于的方程.【詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關鍵是建立的方程或不等式,是一道容易題.14、【解析】

出場運動員編號相同的事件顯然有3種,計算出總的基本事件數,由古典概型概率計算公式求得答案.【詳解】甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,出場的兩名運動員編號相同的事件數為3,出現的基本事件總數,則出場的兩名運動員編號相同的概率為.故答案為:【點睛】本題考查求古典概率的概率問題,屬于基礎題.15、.【解析】試題分析:∵,,成等差數列,∴,又∵等比數列,∴.考點:等差數列與等比數列的性質.【名師點睛】本題主要考查等差與等比數列的性質,屬于容易題,在解題過程中,需要建立關于等比數列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.16、213892【解析】

根據題意畫出圖形,利用棱錐與棱臺的結構特征求出正四棱臺的高,再計算它的體積.【詳解】如圖所示:正四棱錐P-ABCD的下底邊長為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺ABCD-A'B'C'D',且上底邊長為A'B'=6尺,所以,解得,所以該正四棱臺的體積是,故答案為:21;3892.【點睛】本題考查了棱錐與棱臺的結構特征與應用問題,也考查了棱臺的體積計算問題,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)線的普通方程為,曲線的直角坐標方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數方程化為普通方程,進而利用即可化為極坐標方程,同理可得曲線C2的直角坐標方程;

(2)由過的圓心,得得,設,,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標方程為曲線的直角坐標方程為(2)在直角坐標系下,,,恰好過的圓心,

∴由得,是橢圓上的兩點,在極坐標下,設,分別代入中,有和∴,則,即18、(1)最小正周期為,單調遞增區間為;(2).【解析】

(1)利用三角恒等變換思想化簡函數的解析式為,利用正弦型函數的周期公式可求得函數的最小正周期,解不等式可求得該函數的單調遞增區間;(2)由求得,由得出或,分兩種情況討論,結合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數的最小正周期為,由得,因此,函數的單調遞增區間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.【點睛】本題考查正弦型函數的周期和單調區間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應用,考查計算能力,屬于中等題.19、(1);(2).【解析】

(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數值域的方法即可得到答案.【詳解】(1)因為,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因為,所以.(2)由(1)得,在中,,所以.因為,所以,所以當,即時,有最大值1,所以的最大值為.【點睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數量積的坐標運算,是一道容易題.20、(1)的長為4(2)【解析】

(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系,設,根據向量垂直關系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系.設,則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據圖可知,二面角的余弦值為.【點睛】本題考查了立體幾何中的線段長度,二面角,意在考查學生的計算能力和空間想象

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論