2024屆福建省福州市平潭縣九年級數學第一學期期末調研模擬試題含解析_第1頁
2024屆福建省福州市平潭縣九年級數學第一學期期末調研模擬試題含解析_第2頁
2024屆福建省福州市平潭縣九年級數學第一學期期末調研模擬試題含解析_第3頁
2024屆福建省福州市平潭縣九年級數學第一學期期末調研模擬試題含解析_第4頁
2024屆福建省福州市平潭縣九年級數學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆福建省福州市平潭縣九年級數學第一學期期末調研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,?ABCD的對角線相交于點O,且,過點O作交BC于點E,若的周長為10,則?ABCD的周長為A.14 B.16 C.20 D.182.方程x2+2x-5=0經過配方后,其結果正確的是A. B.C. D.3.下列圖形中,是中心對稱圖形的是()A. B. C. D.4.如圖圖形中,是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.5.把拋物線向右平移l個單位,然后向下平移3個單位,則平移后拋物線的解析式為()A. B.C. D.6.向上發射一枚炮彈,經秒后的高度為,且時間與高度的關系式為,若此時炮彈在第秒與第秒時的高度相等,則在下列哪一個時間的高度是最高的()A.第秒 B.第秒 C.第秒 D.第秒7.如圖,是拋物線的圖象,根據圖象信息分析下列結論:①;②;③;④.其中正確的結論是()A.①②③ B.①②④ C.②③④ D.①②③④8.如圖1是一只葡萄酒杯,酒杯的上半部分是以拋物線為模型設計而成,且成軸對稱圖形.從正面看葡萄酒杯的上半部分是一條拋物線,若,,以頂點為原點建立如圖2所示的平面直角坐標系,則拋物線的表達式為()A. B. C. D.9.如圖,為⊙O的直徑,弦于,則下面結論中不一定成立的是()A. B.C. D.10.如圖,以(1,-4)為頂點的二次函數y=ax2+bx+c的圖象與x軸負半軸交于A點,則一元二次方程ax2+bx+c=0的正數解的范圍是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<611.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為()A.(,0) B.(2,0) C.(,0) D.(3,0)12.單靠“死”記還不行,還得“活”用,姑且稱之為“先死后活”吧。讓學生把一周看到或聽到的新鮮事記下來,摒棄那些假話套話空話,寫出自己的真情實感,篇幅可長可短,并要求運用積累的成語、名言警句等,定期檢查點評,選擇優秀篇目在班里朗讀或展出。這樣,即鞏固了所學的材料,又鍛煉了學生的寫作能力,同時還培養了學生的觀察能力、思維能力等等,達到“一石多鳥”的效果。如圖,由兩個相同的正方體和一個圓錐體組成一個立體圖形,其左視圖是(

)A. B. C. D.二、填空題(每題4分,共24分)13.如圖,將函數的圖象沿軸向下平移3個單位后交軸于點,若點是平移后函數圖象上一點,且的面積是3,已知點,則點的坐標__________.14.如圖,點A,B的坐標分別為(1,4)和(4,4),拋物線y=a(x﹣m)2+n的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側),點C的橫坐標最小值為﹣3,則點D的橫坐標最大值為_____.15.如圖,四邊形ABCD與四邊形EFGH位似,其位似中心為點O,且,則______.16.一元二次方程x2﹣2x=0的解是.17.已知反比例函數的圖象經過點,若點在此反比例函數的圖象上,則________.18.西周時期,丞相周公旦設置過一種通過測定日影長度來確定時間的儀器,稱為圭表.如圖是一個根據北京的地理位置設計的圭表,其中,立柱高為.已知,冬至時北京的正午日光入射角約為,則立柱根部與圭表的冬至線的距離(即的長)為______.三、解答題(共78分)19.(8分)已知:如圖,△ABC內接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結AD.(1)求證:∠DAC=∠DBA;(2)連接CD,若CD﹦3,BD﹦4,求⊙O的半徑和DE的長.20.(8分)如圖,在平面直角坐標系xOy中,點A(,3),B(,2),C(0,).(1)以y軸為對稱軸,把△ABC沿y軸翻折,畫出翻折后的△;(2)在(1)的基礎上,①以點C為旋轉中心,把△順時針旋轉90°,畫出旋轉后的△;②點的坐標為,在旋轉過程中點經過的路徑的長度為_____(結果保留π).21.(8分)如圖,已知矩形ABCD的周長為12,E,F,G,H為矩形ABCD的各邊中點,若AB=x,四邊形EFGH的面積為y.(1)請直接寫出y與x之間的函數關系式;(2)根據(1)中的函數關系式,計算當x為何值時,y最大,并求出最大值.22.(10分)如圖,已知MN是⊙O的直徑,直線PQ與⊙O相切于P點,NP平分∠MNQ.(1)求證:NQ⊥PQ;(2)若⊙O的半徑R=3,NP=,求NQ的長.23.(10分)如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點為B.(1)求證:;(2)若AB=5,AD=8,求⊙O的半徑.24.(10分)一個不透明的盒子中裝有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了顏色外其余均相同.從盒中隨機摸出一枚棋子,記下顏色后放回并攪勻,再從盒子中隨機摸出一枚棋子,記下顏色,用畫樹狀圖(或列表)的方法,求兩次摸出的棋子顏色不同的概率.25.(12分)如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0).(1)畫出△ABC關于x軸對稱的△A1B1C1;(2)畫出將△ABC繞原點O按逆時針旋轉90°所得的△A2B2C2,并寫出點C2的坐標;(3)△A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標.26.如圖,為了測得旗桿AB的高度,小明在D處用高為1m的測角儀CD,測得旗桿頂點A的仰角為45°,再向旗桿方向前進10m,又測得旗桿頂點A的仰角為60°,求旗桿AB的高度.

參考答案一、選擇題(每題4分,共48分)1、C【解析】由平行四邊形的性質得出,,,再根據線段垂直平分線的性質得出,由的周長得出,即可求出平行四邊形ABCD的周長.【詳解】解:四邊形ABCD是平行四邊形,,,,,,的周長為10,,平行四邊形ABCD的周長;故選:C.【點睛】本題考查了平行四邊形的性質、線段垂直平分線的性質以及三角形、平行四邊形周長的計算;熟練掌握平行四邊形的性質,并能進行推理計算是解決問題的關鍵.2、C【詳解】解:根據配方法的意義,可知在方程的兩邊同時加減一次項系數的一半的平方,可知,即,配方為.故選:C.【點睛】此題主要考查了配方法,解題關鍵是明確一次項的系數,然后在方程的兩邊同時加減一次項系數的一半的平方,即可求解.3、D【分析】根據中心對稱圖形的定義:把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,逐一判斷即可.【詳解】解:A選項不是中心對稱圖形,故本選項不符合題意;B選項不是中心對稱圖形,故本選項不符合題意;C選項不是中心對稱圖形,故本選項不符合題意;D選項是中心對稱圖形,故本選項符合題意;故選D.【點睛】此題考查的是中心對稱圖形的識別,掌握中心對稱圖形的定義是解決此題的關鍵.4、D【解析】試題解析:A、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉后它的兩部分能夠重合;即不滿足中心對稱圖形的定義,故此選項不合題意;B、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉后它的兩部分能夠重合;即不滿足中心對稱圖形的定義,故此選項不合題意;C、不是軸對稱圖形,因為找不到任何這樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義.是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,又是中心對稱圖形,故此選項符合題意;故選D.5、D【分析】根據題意原拋物線的頂點坐標為(0,0),根據平移規律得平移后拋物線頂點坐標為(1,-3),根據拋物線的頂點式求解析式.【詳解】解:拋物線形平移不改變解析式的二次項系數,平移后頂點坐標為(1,-3),∴平移后拋物線解析式為.故選:D.【點睛】本題考查拋物線的平移與拋物線解析式的聯系,關鍵是把拋物線的平移轉化為頂點的平移,利用頂點式求解析式.6、B【分析】二次函數是一個軸對稱圖形,到對稱軸距離相等的兩個點所表示的函數值也是一樣的.【詳解】根據題意可得:函數的對稱軸為直線x=,即當x=10時函數達到最大值.故選B.【點睛】本題主要考查的是二次函數的對稱性,屬于中等難度題型.理解“如果兩個點到對稱軸距離相等,則所對應的函數值也相等”是解決這個問題的關鍵.7、D【分析】采用數形結合的方法解題,根據拋物線的開口方向,對稱軸,與x、y軸的交點,通過推算進行判斷.【詳解】①根據拋物線對稱軸可得,,正確;②當,,根據二次函數開口向下和得,和,所以,正確;③二次函數與x軸有兩個交點,故,正確;④由題意得,當和時,y的值相等,當,,所以當,,正確;故答案為:D.【點睛】本題考查了二次函數的性質和判斷,掌握二次函數的性質是解題的關鍵.8、A【分析】由題意可知C(0,0),且過點(2,3),設該拋物線的解析式為y=ax2,將兩點代入即可得出a的值,進一步得出解析式.【詳解】根據題意,得該拋物線的頂點坐標為C(0,0),經過點(2,3).設該拋物線的解析式為y=ax2.3=a22.a=.該拋物線的解析式為y=x2.故選A.【點睛】本題考查了二次函數的應用,根據題意得出兩個坐標是解題的關鍵.9、D【分析】根據垂徑定理分析即可.【詳解】根據垂徑定理和等弧對等弦,得A.B.

C正確,只有D錯誤.故選D.【點睛】本題考查了垂徑定理,熟練掌握垂直于弦(非直徑)的直徑平分弦且平分這條弦所對的兩條弧是解題的關鍵.10、C【解析】試題解析:∵二次函數y=ax2+bx+c的頂點為(1,-4),∴對稱軸為x=1,而對稱軸左側圖象與x軸交點橫坐標的取值范圍是-3<x<-2,∴右側交點橫坐標的取值范圍是4<x<1.故選C.考點:圖象法求一元二次方程的近似根.11、C【分析】過點B作BD⊥x軸于點D,易證△ACO≌△BCD(AAS),從而可求出B的坐標,進而可求出反比例函數的解析式,根據解析式與A的坐標即可得知平移的單位長度,從而求出C的對應點.【詳解】解:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故選:C.【點睛】本題考查反比例函數的綜合問題,涉及全等三角形的性質與判定,反比例函數的解析式,平移的性質等知識,綜合程度較高,屬于中等題型.12、B【解析】根據左視圖的定義“在側面內,從左往右觀察物體得到的視圖”判斷即可.【詳解】根據左視圖的定義,從左往右觀察,兩個正方體得到的視圖是一個正方形,圓錐得到的視圖是一個三角形,由此只有B符合故選:B.【點睛】本題考查了三視圖中的左視圖的定義,熟記定義是解題關鍵.另外,主視圖和俯視圖的定義也是常考點.二、填空題(每題4分,共24分)13、或【分析】根據函數圖象的變化規律可得變換后得到的圖象對應的函數解析式為,求出點的坐標為,那么,設的邊上高為,根據的面積是3可求得,從而求得的坐標.【詳解】解:將函數的圖象沿軸向下平移3個單位后得到,令,得,解得,點的坐標為,點,.設的邊上高為,的面積是3,,,將代入,解得;將代入,解得.點的坐標是,或.故答案為:,或.【點睛】本題考查了坐標與圖形變化-平移,三角形的面積,函數圖像上點的特征,由平移后函數解析式求出點的坐標是解題的關鍵.14、1【分析】根據題意當點C的橫坐標取最小值時,拋物線的頂點與點A重合,進而可得拋物線的對稱軸,則可求出此時點D的最小值,然后根據拋物線的平移可求解.【詳解】解:∵點A,B的坐標分別為(1,4)和(4,4),∴AB=3,由拋物線y=a(x﹣m)2+n的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側),可得:當點C的橫坐標取最小值時,拋物線的頂點與點A重合,∴拋物線的對稱軸為:直線,∵點,∴點D的坐標為,∵頂點在線段AB上移動,∴點D的橫坐標的最大值為:5+3=1;故答案為1.【點睛】本題主要考查二次函數的平移及性質,熟練掌握二次函數的性質是解題的關鍵.15、【解析】利用位似圖形的性質結合位似比等于相似比得出答案.【詳解】四邊形ABCD與四邊形EFGH位似,其位似中心為點O,且,,則,故答案為:.【點睛】本題考查了位似的性質,熟練掌握位似的性質是解題的關鍵.16、【分析】方程整理后,利用因式分解法求出解即可.【詳解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故答案為x1=0,x1=1.17、【分析】將點(1,3)代入y即可求出k+1的值,再根據k+1=xy解答即可.【詳解】∵反比例函數的圖象上有一點(1,3),∴k+1=1×3=6,又點(-3,n)在反比例函數的圖象上,∴6=-3×n,解得:n=-1.故答案為:-1.【點睛】本題考查了反比例函數圖象上點的坐標特征,只要點在函數的圖象上,則一定滿足函數的解析式.反之,只要滿足函數解析式就一定在函數的圖象上.18、【分析】直接根據正切的定義求解即可.【詳解】在Rt△ABC中,約為,高為,∵tan∠ABC=,∴BC=m.故答案為:.【點睛】本題考查了解直角三角形的應用,解決此問題的關鍵在于正確理解題意得基礎上建立數學模型,把實際問題轉化為數學問題.三、解答題(共78分)19、(1)見解析;(2)⊙O的半徑為2.5;DE=2.1.【分析】(1)根據角平分線的性質得到∠CBD=∠DBA,根據圓周角定理得到∠DAC=∠CBD,∠ADB=∠AED=90°,等量代換即可得到結論;(2)連接CD,根據等腰三角形的性質得到CD=AD,根據勾股定理得到AB=5,根據三角形的面積公式即可得到結論.【詳解】解:(1)證明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC與∠CBD都是所對的圓周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,(2)解:連接CD,∵∠CBD=∠DBA,∴CD=AD=3,∵AB是⊙O的直徑∴∠ADB=90°在Rt△ADB中,AB=故⊙O的半徑為2.5∵∴;【點睛】此題考查的是三角形的外接圓與外心及圓周角定理和勾股定理以及三角形面積等知識,熟練利用圓周角定理得出各等量關系是解題關鍵.20、(1)畫圖見解析;(2)①畫圖見解析;②(4,-2),.【分析】(1)根據軸稱圖形的性質作出圖形即可;(2)①根據旋轉的性質作出圖形即可;②在坐標系中直接讀取數值即可,第二空根據弧長計算公式進行計算即可.【詳解】解:(1)如圖所示:△為所求;(2)①如圖所示,△為所求;②由圖可知點的坐標為(4,-2);∵==5在旋轉過程中點經過的路徑的長度為:=.故答案為:(4,-2),.【點睛】本題考查了軸對稱和旋轉作圖,以及弧長計算公式的應用.掌握弧長計算公式是解題的關鍵.21、(1)y=-x2+3x;(2)當x=3時,y有最大值,為4.5.【解析】分析:(1)由矩形的周長為12,AB=x,結合矩形的性質可得BC=6-x,然后由E,F,G,H為矩形ABCD的各邊中點可得四邊形EFGH的面積是矩形面積的一半,從而列出函數關系式;(2)由關系式為二次函數以及二次項系數小于0可得四邊形EFGH的面積有最大值,然后利用配方法將拋物線的解析式寫成頂點式,從而得到x取什么值時,y取得最大值,以及最大值是多少.詳解:(1)∵矩形ABCD的周長為12,AB=x,∴BC=×12-x=6-x.∵E,F,G,H為矩形ABCD的各邊中點,∴y=x(6-x)=-x2+3x,即y=-x2+3x.(2)y=-x2+3x=-(x-3)2+4.5,∵a=-<0,∴y有最大值,當x=3時,y有最大值,為4.5.點睛:本題是一道有關二次函數應用的題目,解題的關鍵是依據矩形的性質結合已知列出二次函數關系式,然后利用二次函數的最值解決問題.22、(1)見解析;(2).【分析】(1)連接OP,則OP⊥PQ,然后證明OP//NQ即可.(2)連接MP,在Rt△MNP中,利用三角函數求得∠MNP的度數,即可求得∠PNQ的值,然后在Rt△PNQ中利用三角函數即可求解.【詳解】(1)證明:連接OP,∵直線PQ與⊙O相切于P點,∴OP⊥PQ,即∠OPQ=90°,∵OP=ON,∴∠OPN=∠ONP.又∵NP平分∠MNQ,∴∠OPN=∠PNQ.∴OP//NQ.∴∠NQP=180°-∠OPQ=90°,∴NQ⊥PQ.(2)連接MP,∵MN是直徑,∴∠MPN=90°.∴,∴∠MNP=30°.∴∠PNQ=30°.∴在Rt△PNQ中,NQ=NP?cos30°=.【點睛】本題考查了切線的性質,解直角三角形,正確添加輔助線,靈活運用相關知識是解題的關鍵.23、(1)證明見解析;(2)⊙O的半徑為【分析】(1)連接OB,根據題意求證OB⊥AD,利用垂徑定理求證;(2)根據垂徑定理和勾股定理求解.【詳解】解:(1)連接OB,交AD于點E.∵BC是⊙O的切線,切點為B,∴OB⊥BC.∴∠OBC=90°∵四邊形ABCD是平行四邊形∴AD//BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論