




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年新疆吐魯番市高昌區(qū)第一中學(xué)數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.已知圓錐的母線長為4,底面圓的半徑為3,則此圓錐的側(cè)面積是()A.6π B.9π C.12π D.16π2.如果,那么銳角A的度數(shù)是()A.60° B.45° C.30° D.20°3.下列說法正確的是()A.不可能事件發(fā)生的概率為;B.隨機(jī)事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生;D.投擲一枚質(zhì)地均勻的硬幣次,正面朝上的次數(shù)一定是次4.方程x2-x-1=0的根是(
)A., B.?,C., D.沒有實數(shù)根5.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°6.m是方程的一個根,且,則的值為()A. B.1 C. D.7.如圖,菱形中,過頂點作交對角線于點,已知,則的大小為()A. B. C. D.8.在平面直角坐標(biāo)系中,已知點A(﹣4,2),B(﹣6,﹣4),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)9.某工廠一月份生產(chǎn)機(jī)器100臺,計劃二、三月份共生產(chǎn)機(jī)器240臺,設(shè)二、三月份的平均增長率為x,則根據(jù)題意列出方程是()A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=24010.化簡的結(jié)果是A.-9 B.-3 C.±9 D.±311.如圖,在由邊長為1的小正方形組成的網(wǎng)格中,點,,,都在格點上,點在的延長線上,以為圓心,為半徑畫弧,交的延長線于點,且弧經(jīng)過點,則扇形的面積為()A. B. C. D.12.如圖,是圓的直徑,直線與圓相切于點,交圓于點,連接.若,則的度數(shù)是()A. B. C. D.二、填空題(每題4分,共24分)13.已知拋物線與軸交于兩點,若點的坐標(biāo)為,拋物線的對稱軸為直線,則點的坐標(biāo)為__________.14.若a、b、c、d滿足ab=cd=15.若一三角形的三邊長分別為5、12、13,則此三角形的內(nèi)切圓半徑為______.16.若方程x2﹣2x﹣4=0的兩個實數(shù)根為a,b,則-a2-b2的值為_________。17.三角形兩邊長分別是4和2,第三邊長是2x2﹣9x+4=0的一個根,則三角形的周長是_____.18.如圖,正方形ABEF與正方形BCDE有一邊重合,那么正方形BCDE可以看成是由正方形ABEF繞點O旋轉(zhuǎn)得到的,則圖中點O的位置為_____.三、解答題(共78分)19.(8分)如圖,已知⊙O經(jīng)過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.20.(8分)如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于點D,且∠D=2∠CAD.(1)求∠D的度數(shù);(2)若CD=2,求BD的長.21.(8分)如圖,已知,以為直徑作半圓,半徑繞點順時針旋轉(zhuǎn)得到,點的對應(yīng)點為,當(dāng)點與點重合時停止.連接并延長到點,使得,過點作于點,連接,.(1)______;(2)如圖,當(dāng)點與點重合時,判斷的形狀,并說明理由;(3)如圖,當(dāng)時,求的長;(4)如圖,若點是線段上一點,連接,當(dāng)與半圓相切時,直接寫出直線與的位置關(guān)系.22.(10分)若為實數(shù),關(guān)于的方程的兩個非負(fù)實數(shù)根為、,求代數(shù)式的最大值.23.(10分)如圖,某中學(xué)準(zhǔn)備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用15m),現(xiàn)在已備足可以砌50m長的墻的材料,試設(shè)計一種砌法,使矩形花園的面積為300m1.24.(10分)如圖,拋物線與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當(dāng)x=﹣1和x=3時,y值相等.直線y=與拋物線有兩個交點,其中一個交點的橫坐標(biāo)是6,另一個交點是這條拋物線的頂點M.(1)求這條拋物線的表達(dá)式.(2)動點P從原點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B運動,同時點Q從點B出發(fā),在線段BC上以每秒2個單位長度的速度向點C運動,當(dāng)一個點到達(dá)終點時,另一個點立即停止運動,設(shè)運動時間為t秒.①求t的取值范圍.②若使△BPQ為直角三角形,請求出符合條件的t值;③t為何值時,四邊形ACQP的面積有最小值,最小值是多少?直接寫出答案.25.(12分)在一個不透明的盒子里,裝有四個分別標(biāo)有數(shù)字2、3、4、6的乒乓球,它們的形狀、大小、顏色、質(zhì)地完全相同,耀華同學(xué)先從盒子里隨機(jī)取出一個小球,記為數(shù)字x,不放回,再由潔玲同學(xué)隨機(jī)取出另一個小球,記為數(shù)字y,(1)用樹狀圖或列表法表示出坐標(biāo)(x,y)的所有可能出現(xiàn)的結(jié)果;(2)求取出的坐標(biāo)(x,y)對應(yīng)的點落在反比例函數(shù)y=圖象上的概率.26.如圖,一次函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于和B兩點,與x軸交于點C.(1)求反比例函數(shù)的解析式;(2)若點P在x軸上,且的面積為5,求點P的坐標(biāo).
參考答案一、選擇題(每題4分,共48分)1、C【分析】圓錐的側(cè)面積就等于經(jīng)母線長乘底面周長的一半.依此公式計算即可.【詳解】解:底面圓的半徑為3,則底面周長=6π,側(cè)面面積=×6π×4=12π,故選C.考點:圓錐的計算.2、A【分析】根據(jù)特殊角的三角函數(shù)值即可求解.【詳解】解:∵,∴銳角A的度數(shù)是60°,故選:A.【點睛】本題考查特殊角的三角函數(shù)值,掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.3、A【分析】由題意根據(jù)不可能事件是指在任何條件下不會發(fā)生,隨機(jī)事件就是可能發(fā)生,也可能不發(fā)生的事件,發(fā)生的機(jī)會大于0并且小于1,進(jìn)行判斷.【詳解】解:A、不可能事件發(fā)生的概率為0,故本選項正確;B、隨機(jī)事件發(fā)生的概率P為0<P<1,故本選項錯誤;C、概率很小的事件,不是不發(fā)生,而是發(fā)生的機(jī)會少,故本選項錯誤;D、投擲一枚質(zhì)地均勻的硬幣1000次,是隨機(jī)事件,正面朝上的次數(shù)不確定是多少次,故本選項錯誤;故選:A.【點睛】本題考查不可能事件、隨機(jī)事件的概念.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、C【解析】先求出根的判別式b2-4ac=(-1)2-4×1×(-1)=5>0,然后根據(jù)一元二次方程的求根公式為,求出這個方程的根是x==.故選C.5、C【分析】由等腰三角形的性質(zhì)可求∠ACD=70°,由平行線的性質(zhì)可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),是基礎(chǔ)題.6、A【解析】將m代入關(guān)于x的一元二次方程x2+nx+m=0,通過解該方程即可求得m+n的值.【詳解】解:∵m是關(guān)于x的一元二次方程x2+nx+m=0的根,
∴m2+nm+m=0,
∴m(m+n+1)=0;
又∵m≠0,
∴m+n+1=0,
解得m+n=-1;
故選:A.【點睛】本題考查了一元二次方程的解的定義.一元二次方程ax2+bx+c=0(a≠0)的解一定滿足該一元二次方程的關(guān)系式.7、D【分析】先說明ABD=∠ADC=∠CBD,然后再利用三角形內(nèi)角和180°求出即可∠CBD度數(shù),最后再用直角三角形的內(nèi)角和定理解答即可.【詳解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵∴∠CBD=∠BDC=∠ABD=∠ADB=(180°-134°)=23°∴=90°-23°=67°故答案為D.【點睛】本題主要考查了菱形的性質(zhì),解題的關(guān)鍵是掌握菱形的對角線平分每一組對角和三角形內(nèi)角和定理.8、D【解析】根據(jù)在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k,即可求得答案.【詳解】∵點A(-4,2),B(-6,-4),以原點O為位似中心,相似比為,把△ABO縮小,∴點A的對應(yīng)點A′的坐標(biāo)是:(-2,1)或(2,-1).故選D.【點睛】此題考查了位似圖形與坐標(biāo)的關(guān)系.此題比較簡單,注意在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)比等于±k.9、B【分析】設(shè)二、三月份的平均增長率為x,則二月份的生產(chǎn)量為100×(1+x),三月份的生產(chǎn)量為100×(1+x)(1+x),根據(jù)二月份的生產(chǎn)量+三月份的生產(chǎn)量=1臺,列出方程即可.【詳解】設(shè)二、三月份的平均增長率為x,則二月份的生產(chǎn)量為100×(1+x),三月份的生產(chǎn)量為100×(1+x)(1+x),根據(jù)題意,得100(1+x)+100(1+x)2=1.故選B.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,設(shè)出未知數(shù),正確找出等量關(guān)系是解決問題的關(guān)鍵.10、B【分析】根據(jù)二次根式的性質(zhì)即可化簡.【詳解】=-3故選B.【點睛】此題主要考查二次根式的化簡,解題的關(guān)鍵實數(shù)的性質(zhì).11、B【分析】連接AC,根據(jù)網(wǎng)格的特點求出r=AC的長度,再得到扇形的圓心角度數(shù),根據(jù)扇形面積公式即可求解.【詳解】連接AC,則r=AC=扇形的圓心角度數(shù)為∠BAD=45°,∴扇形的面積==故選B.【點睛】此題主要考查扇形面積求解,解題的關(guān)鍵是熟知勾股定理及扇形面積公式.12、B【分析】根據(jù)切線的性質(zhì)可得:∠BAP=90°,然后根據(jù)三角形的內(nèi)角和定理即可求出∠AOC,最后根據(jù)圓周角定理即可求出.【詳解】解:∵直線與圓相切∴∠BAP=90°∵∴∠AOC=180°-∠BAP-∠P=48°∴故選B.【點睛】此題考查的是切線的性質(zhì)和圓周角定理,掌握切線的性質(zhì)和同弧所對的圓周角是圓心角的一半是解決此題的關(guān)鍵.二、填空題(每題4分,共24分)13、【解析】根據(jù)拋物線對稱軸是直線及兩點關(guān)于對稱軸直線對稱求出點B的坐標(biāo)即可.【詳解】解:∵拋物線與軸交于兩點,且點的坐標(biāo)為,拋物線的對稱軸為直線∴點B的橫坐標(biāo)為即點B的坐標(biāo)為【點睛】本題考查拋物線的對稱性,利用數(shù)形結(jié)合思想確定關(guān)于直線對稱的點的坐標(biāo)是本題的解題關(guān)鍵.14、3【解析】根據(jù)等比性質(zhì)求解即可.【詳解】∵ab∴a+cb+d=a故答案為:34【點睛】本題考查了比例的性質(zhì),主要利用了等比性質(zhì).等比性質(zhì):在一個比例等式中,兩前項之和與兩后項之和的比例與原比例相等.對于實數(shù)a,b,c,d,且有b≠0,d≠0,如果ab=c15、1.【解析】∵,由勾股定理逆定理可知此三角形為直角三角形,∴它的內(nèi)切圓半徑,16、-12【分析】根據(jù)一元二次方程的解及根與系數(shù)的關(guān)系,得出兩根之和與兩根之積,再將待求式利用完全平方公式表示成關(guān)于兩根之和與兩根之積的式子,最后代入求值即可.【詳解】解:∵方程x2﹣2x﹣4=0的兩個實數(shù)根為,∴,∴=-4-8=-12.故答案為:-12.【點睛】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,將待求式利用完全平方公式表示成關(guān)于兩根之和與兩根之積的式子是解題的關(guān)鍵.17、1.【分析】先利用因式分解法求出方程的解,再由三角形的三邊關(guān)系確定出第三邊,最后求周長即可.【詳解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=或x=4,當(dāng)x=時,+2<4,不能構(gòu)成三角形,舍去;則三角形周長為4+4+2=1.故答案為:1.【點睛】本題主要考查了解一元二次方程,正確使用因式分解法解一元二次方程是解答本題的關(guān)鍵.18、點B或點E或線段BE的中點.【分析】由旋轉(zhuǎn)的性質(zhì)分情況討論可求解;【詳解】解:∵正方形BCDE可以看成是由正方形ABEF繞點O旋轉(zhuǎn)得到的,∴若點A與點E是對稱點,則點B是旋轉(zhuǎn)中心是點B;若點A與點D是對稱點,則點B是旋轉(zhuǎn)中心是BE的中點;若點A與點E是對稱點,則點B是旋轉(zhuǎn)中心是點E;故答案為:點B或點E或線段BE的中點.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),利用分類討論是本題的關(guān)鍵.三、解答題(共78分)19、⊙O的半徑為.【解析】如圖,連接OA.交BC于H.首先證明OA⊥BC,在Rt△ACH中,求出AH,設(shè)⊙O的半徑為r,在Rt△BOH中,根據(jù)BH2+OH2=OB2,構(gòu)建方程即可解決問題。【詳解】解:如圖,連接OA.交BC于H.∵點A為的中點,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,設(shè)⊙O的半徑為r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半徑為.【點睛】本題考查圓心角、弧、弦的關(guān)系、垂徑定理、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.20、(1)45°;(2).【解析】試題分析:(1)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠COD=2∠A,求出∠D=∠COD,根據(jù)切線性質(zhì)求出∠OCD=90°,即可求出答案;(2)求出OC=CD=2,根據(jù)勾股定理求出BD即可.試題解析:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,CD=2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:BD=.考點:切線的性質(zhì)21、(1);(2)是等邊三角形,理由見解析;(3)的長為或;(4)【分析】(1)先證AC垂直平分DB,即可證得AD=AB;(2)先證AD=BD,又因為AD=AB,可得△ABD是等邊三角形;
(3)分當(dāng)點在上時和當(dāng)點在上時,由勾股定理列方程求解即可;(4)連結(jié)OC,證明OC∥AD,由與半圓相切,可得∠OCP=90°,即可得到與的位置關(guān)系.【詳解】解:(1)∵為直徑,∴∠ACB=90°,又∵∴AD=AB∴,故答案為10;(2)是等邊三角形,理由如下:∵點與點重合,∴,∵,∴,∵,∴,∴是等邊三角形;(3)∵,∴,當(dāng)點在上時,則,,∵,,∴在和中,由勾股定理得,即,解得,∴;當(dāng)點在上時,同理可得,解得,∴,綜上所述,的長為或;(4).如圖,連結(jié)OC,∵與半圓相切,∴OC⊥PC,∵△ADB為等腰三角形,,∴∠DAC=∠BAC,∵AO=OC∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴OC∥AD,∴.【點睛】考查了圓的綜合題,涉及的知識點有直角三角形的性質(zhì)和圓的性質(zhì),等邊三角形的判定和性質(zhì),垂直平分線的性質(zhì),勾股定理,,分類思想的運用,綜合性較強(qiáng),有一定的難度.22、1【分析】根據(jù)根的判別式和根與系數(shù)的關(guān)系進(jìn)行列式求解即可;【詳解】∵,,,,,,,當(dāng)時,原式=-15,當(dāng)時,原式=1,代數(shù)式的最大值為1.【點睛】本題主要考查了一元二次方程的知識點,準(zhǔn)確應(yīng)用根的判別式和根與系數(shù)的關(guān)系是解題的關(guān)鍵.23、可以圍成AB的長為15米,BC為10米的矩形【解析】解:設(shè)AB=xm,則BC=(50﹣1x)m.根據(jù)題意可得,x(50﹣1x)=300,解得:x1=10,x1=15,當(dāng)x=10,BC=50﹣10﹣10=30>15,故x1=10(不合題意舍去).答:可以圍成AB的長為15米,BC為10米的矩形.根據(jù)可以砌50m長的墻的材料,即總長度是50m,AB=xm,則BC=(50﹣1x)m,再根據(jù)矩形的面積公式列方程,解一元二次方程即可.24、(1);(2)①,②t的值為或,③當(dāng)t=2時,四邊形ACQP的面積有最小值,最小值是.【分析】(1)求出對稱軸,再求出y=與拋物線的兩個交點坐標(biāo),將其代入拋物線的頂點式即可;(2)①先求出A、B、C的坐標(biāo),寫出OB、OC的長度,再求出BC的長度,由運動速度即可求出t的取值范圍;②當(dāng)△BPQ為直角三角形時,只存在∠BPQ=90°或∠PQB=90°兩種情況,分別證△BPQ∽△BOC和△BPQ∽△BCO,即可求出t的值;③如圖,過點Q作QH⊥x軸于點H,證△BHQ∽△BOC,求出HQ的長,由公式S四邊形ACQP=S△ABC-S△BPQ可求出含t的四邊形ACQP的面積,通過二次函數(shù)的圖象及性質(zhì)可寫出結(jié)論.【詳解】解:(1)∵在拋物線中,當(dāng)x=﹣1和x=3時,y值相等,∴對稱軸為x=1,∵y=與拋物線有兩個交點,其中一個交點的橫坐標(biāo)是6,另一個交點是這條拋物線的頂點M,∴頂點M(1,),另一交點為(6,6),∴可設(shè)拋物線的解析式為y=a(x﹣1)2,將點(6,6)代入y=a(x﹣1)2,得6=a(6﹣1)2,∴a=,∴拋物線的解析式為(2)①在中,當(dāng)y=0時,x1=﹣2,x2=4;當(dāng)x=0時,y=﹣3,∴A(﹣2,0),B(4,0),C(0,﹣3),∴在Rt△OCB中,OB=4,OC=3,∴BC==5,∴,∵<4,∴②當(dāng)△BPQ為直角三角形時,只存在∠BPQ=90°或∠PQB=90°兩種情況,當(dāng)∠BPQ=90°時,∠BPQ=∠BOC=90°,∴PQ∥OC,∴△BPQ∽△BOC,∴,即,∴t=;當(dāng)∠PQB=90°時,∠PQB=∠BOC=90°,∠PBQ=∠CBO,∴△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南昌航空大學(xué)《土力學(xué)含實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 呂梁學(xué)院《軟筆書法》2023-2024學(xué)年第二學(xué)期期末試卷
- 牡丹江師范學(xué)院《算法設(shè)計與分析Ⅲ》2023-2024學(xué)年第二學(xué)期期末試卷
- 南陽理工學(xué)院《IntroductiontoMicroprocessors》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海工藝美術(shù)職業(yè)學(xué)院《醫(yī)學(xué)分子生物學(xué)實驗技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 南充科技職業(yè)學(xué)院《生態(tài)學(xué)原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津理工大學(xué)中環(huán)信息學(xué)院《中學(xué)化學(xué)教學(xué)方法與理論》2023-2024學(xué)年第二學(xué)期期末試卷
- 二零二五范文公園游樂場地租賃合同
- 護(hù)坡承包合同書范例
- 二零二五工程停工補(bǔ)償協(xié)議
- 電子政務(wù)與電子商務(wù)的關(guān)系探討
- 廚師菜品考核評分表201921
- 人工濕地設(shè)計方案綜述
- 鋁合金牌號對照
- 行為習(xí)慣養(yǎng)成活動方案
- C6-5-2設(shè)備單機(jī)試運轉(zhuǎn)記錄
- 管道夜間施工方案
- 淡化海砂項目規(guī)劃實施方案(76頁)
- 正交試驗設(shè)計與數(shù)據(jù)處理.ppt
- 讓孩子學(xué)會排解壓力 學(xué)生家長面授課參考教案
- 輪胎式裝載機(jī)檢測報告.doc
評論
0/150
提交評論