




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省廈門市第二中學2024屆高三階段性測試(二模)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列是公比為的等比數列,且,,成等差數列,則公比的值為(
)A. B. C.或 D.或2.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.3.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.4.設,是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④5.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.7.已知向量,,則與共線的單位向量為()A. B.C.或 D.或8.函數在上單調遞減,且是偶函數,若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)9.設雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.610.已知函數,則下列結論錯誤的是()A.函數的最小正周期為πB.函數的圖象關于點對稱C.函數在上單調遞增D.函數的圖象可由的圖象向左平移個單位長度得到11.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且12.函數在上單調遞減的充要條件是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則容器體積的最小值為_________.14.函數(為自然對數的底數,),若函數恰有個零點,則實數的取值范圍為__________________.15.二項式的展開式的各項系數之和為_____,含項的系數為_____.16.若的展開式中各項系數之和為32,則展開式中x的系數為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)當時,求不等式的解集;(2)若,,證明:.18.(12分)已知函數.當時,求不等式的解集;,,求a的取值范圍.19.(12分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數方程為(為參數),與交于,兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設點;若、、成等比數列,求的值20.(12分)已知函數(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數的取值范圍;(Ⅲ)若數列的前項和,,求證:數列的前項和.21.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.22.(10分)在直角坐標系中,曲線的參數方程是(是參數),以原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線的極坐標方程;(2)在曲線上取一點,直線繞原點逆時針旋轉,交曲線于點,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
由成等差數列得,利用等比數列的通項公式展開即可得到公比q的方程.【題目詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【題目點撥】本題考查等差等比數列的綜合,利用等差數列的性質建立方程求q是解題的關鍵,對于等比數列的通項公式也要熟練.2、C【解題分析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【題目詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【題目點撥】考查直三棱柱的定義,線面垂直的性質,考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題.3、D【解題分析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【題目詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設正方體的棱長為,則,∴.
取,連接,則共面,在中,設到的距離為,
設到平面的距離為,
.
故選D.【題目點撥】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.4、C【解題分析】
根據線面平行或垂直的有關定理逐一判斷即可.【題目詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內過點作直線的垂線,則直線,又因為,設經過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C【題目點撥】考查線面平行或垂直的判斷,基礎題.5、B【解題分析】
由兩直線垂直求得則或,再根據充要條件的判定方法,即可求解.【題目詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【題目點撥】本題主要考查了兩直線的位置關系,及必要不充分條件的判定,其中解答中利用兩直線的位置關系求得的值,同時熟記充要條件的判定方法是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.6、A【解題分析】
設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【題目詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.【題目點撥】本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關系.7、D【解題分析】
根據題意得,設與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【題目詳解】因為,,則,所以,設與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【題目點撥】本題考查向量的坐標運算以及共線定理和單位向量的定義.8、B【解題分析】
根據題意分析的圖像關于直線對稱,即可得到的單調區間,利用對稱性以及單調性即可得到的取值范圍。【題目詳解】根據題意,函數滿足是偶函數,則函數的圖像關于直線對稱,若函數在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【題目點撥】本題考查偶函數的性質,以及函數單調性的應用,有一定綜合性,屬于中檔題。9、A【解題分析】
根據雙曲線的標準方程求出右頂點、右焦點的坐標,再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標,最后利用三角形的面積公式進行求解即可.【題目詳解】由雙曲線的標準方程可知中:,因此右頂點的坐標為,右焦點的坐標為,雙曲線的漸近線方程為:,根據雙曲線和漸近線的對稱性不妨設點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【題目點撥】本題考查了雙曲線的漸近線方程的應用,考查了兩直線平行的性質,考查了數學運算能力.10、D【解題分析】
由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【題目詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【題目點撥】本題考查余弦型函數的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.11、B【解題分析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【題目詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【題目點撥】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.12、C【解題分析】
先求導函數,函數在上單調遞減則恒成立,對導函數不等式換元成二次函數,結合二次函數的性質和圖象,列不等式組求解可得.【題目詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.【題目點撥】本題考查求三角函數單調區間.求三角函數單調區間的兩種方法:(1)代換法:就是將比較復雜的三角函數含自變量的代數式整體當作一個角(或),利用基本三角函數的單調性列不等式求解;(2)圖象法:畫出三角函數的正、余弦曲線,結合圖象求它的單調區間.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.14、【解題分析】
令,則,恰有四個解.由判斷函數增減性,求出最小值,列出相應不等式求解得出的取值范圍.【題目詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.【題目點撥】本題考查導數在函數當中的應用,屬于難題.15、【解題分析】
將代入二項式可得展開式各項系數之和,寫出二項展開式通項,令的指數為,求出參數的值,代入通項即可得出項的系數.【題目詳解】將代入二項式可得展開式各項系數和為.二項式的展開式通項為,令,解得,因此,展開式中含項的系數為.故答案為:;.【題目點撥】本題考查了二項式定理及二項式展開式通項公式,屬基礎題.16、2025【解題分析】
利用賦值法,結合展開式中各項系數之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數.【題目詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數為.故答案為:2025【題目點撥】本小題主要考查二項式展開式各項系數之和,考查二項式展開式指定項系數的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見證明【解題分析】
(1)利用零點分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質進行證明.【題目詳解】(1)解:當時,不等式可化為.當時,,,所以;當時,,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【題目點撥】本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點分段討論法.18、(1);(2).【解題分析】
(1)當時,,①當時,,令,即,解得,②當時,,顯然成立,所以,③當時,,令,即,解得,綜上所述,不等式的解集為.(2)因為,因為,有成立,所以只需,解得,所以a的取值范圍為.【題目點撥】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現了數形結合的思想;法二:利用“零點分段法”求解,體現了分類討論的思想;法三:通過構造函數,利用函數的圖象求解,體現了函數與方程的思想.19、(1)曲線的直角坐標方程為,直線的普通方程為;(2)【解題分析】
(1)由極坐標與直角坐標的互化公式和參數方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;(2)把的參數方程代入拋物線方程中,利用韋達定理得,,可得到,根據因為,,成等比數列,列出方程,即可求解.【題目詳解】(1)由題意,曲線的極坐標方程可化為,又由,可得曲線的直角坐標方程為,由直線的參數方程為(為參數),消去參數,得,即直線的普通方程為;(2)把的參數方程代入拋物線方程中,得,由,設方程的兩根分別為,,則,,可得,.所以,,.因為,,成等比數列,所以,即,則,解得解得或(舍),所以實數.【題目點撥】本題主要考查了極坐標方程與直角坐標方程,以及參數方程與普通方程的互化,以及直線參數方程的應用,其中解答中熟記互化公式,合理應用直線的參數方程中參數的幾何意義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解題分析】試題分析:將,求出切線方程求導后討論當時和時的單調性證明,求出實數的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取等號).故在上為增函數.①當時,,故在上為增函數,所以恒成立,故符合題意;②當時,由于,,根據零點存在定理,必存在,使得,由于在上為增函數,故當時,,故在上為減函數,所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數的取值范圍為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目管理考試趨勢與挑戰試題及答案
- 2025年關鍵點的證券從業資格試題及答案
- 檔案保護技術的新發展試題及答案
- 沼氣管線泄漏施工方案
- 財務報表理解的證券從業資格證試題及答案
- 2024年福建事業單位考試榜樣學習試題及答案
- 實木地板龍骨施工方案
- 提高農業職業經理人考試的競爭素質的方法試題及答案
- 項目實施中的法律合規要求試題及答案
- 福建事業單位考試社會學知識題及答案
- 《Python語言程序設計》課件-第六章(中英文課件)
- 關于對全市醫療質量和醫療安全檢查情況的通報
- 《住院患者身體約束的護理》團體標準解讀課件
- 2024年土地流轉的合同模板
- 靜脈留置針常見并發癥
- 吉林銀行總行社會招聘筆試真題2023
- 2024年現場綜合化維護工程師三級認證考試試題及答案
- 西藏拉薩市2025屆高三理綜下學期一模試題
- DL-T+748.8-2021火力發電廠鍋爐機組檢修導則 第8部分:空氣預熱器檢修
- 《無人機測繪技能訓練模塊》課件-無人機航測影像獲取外業
- CJJT135-2009 透水水泥混凝土路面技術規程
評論
0/150
提交評論