廣東省汕頭市潮陽區2024屆高三第二次質量預測數學試題試卷_第1頁
廣東省汕頭市潮陽區2024屆高三第二次質量預測數學試題試卷_第2頁
廣東省汕頭市潮陽區2024屆高三第二次質量預測數學試題試卷_第3頁
廣東省汕頭市潮陽區2024屆高三第二次質量預測數學試題試卷_第4頁
廣東省汕頭市潮陽區2024屆高三第二次質量預測數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省汕頭市潮陽區2024屆高三第二次質量預測數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸2.已知函數是定義在上的奇函數,函數滿足,且時,,則()A.2 B. C.1 D.3.閱讀如圖的程序框圖,運行相應的程序,則輸出的的值為()A. B. C. D.4.已知函數,,且在上是單調函數,則下列說法正確的是()A. B.C.函數在上單調遞減 D.函數的圖像關于點對稱5.設是等差數列,且公差不為零,其前項和為.則“,”是“為遞增數列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.音樂,是用聲音來展現美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數學家傅立葉研究了樂聲的本質,他證明了所有的樂聲都能用數學表達式來描述,它們是一些形如的簡單正弦函數的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數學表達式可知,所有泛音的頻率都是基本音頻率的整數倍,稱為基本音的諧波.下列函數中不能與函數構成樂音的是()A. B. C. D.7.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有()種.A.360 B.240 C.150 D.1208.設,則A. B. C. D.9.在我國傳統文化“五行”中,有“金、木、水、火、土”五個物質類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是()A.0.2 B.0.5 C.0.4 D.0.810.已知函數,存在實數,使得,則的最大值為()A. B. C. D.11.若向量,,則與共線的向量可以是()A. B. C. D.12.由實數組成的等比數列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式組所表示的平面區域為,則區域的外接圓的面積為______.14.函數在的零點個數為_________.15.函數在區間上的值域為______.16.已知數列中,為其前項和,,,則_________,_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.18.(12分)已知函數,為的導數,函數在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.19.(12分)已知△ABC三內角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.20.(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.21.(12分)設點,動圓經過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.22.(10分)已知f(x)=|x+3|-|x-2|(1)求函數f(x)的最大值m;(2)正數a,b,c滿足a+2b+3c=m,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【題目詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【題目點撥】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.2、D【解題分析】

說明函數是周期函數,由周期性把自變量的值變小,再結合奇偶性計算函數值.【題目詳解】由知函數的周期為4,又是奇函數,,又,∴,∴.故選:D.【題目點撥】本題考查函數的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.3、C【解題分析】

根據給定的程序框圖,計算前幾次的運算規律,得出運算的周期性,確定跳出循環時的n的值,進而求解的值,得到答案.【題目詳解】由題意,,第1次循環,,滿足判斷條件;第2次循環,,滿足判斷條件;第3次循環,,滿足判斷條件;可得的值滿足以3項為周期的計算規律,所以當時,跳出循環,此時和時的值對應的相同,即.故選:C.【題目點撥】本題主要考查了循環結構的程序框圖的計算與輸出問題,其中解答中認真審題,得出程序運行時的計算規律是解答的關鍵,著重考查了推理與計算能力.4、B【解題分析】

根據函數,在上是單調函數,確定,然后一一驗證,A.若,則,由,得,但.B.由,,確定,再求解驗證.C.利用整體法根據正弦函數的單調性判斷.D.計算是否為0.【題目詳解】因為函數,在上是單調函數,所以,即,所以,若,則,又因為,即,解得,而,故A錯誤.由,不妨令,得由,得或當時,,不合題意.當時,,此時所以,故B正確.因為,函數,在上是單調遞增,故C錯誤.,故D錯誤.故選:B【題目點撥】本題主要考查三角函數的性質及其應用,還考查了運算求解的能力,屬于較難的題.5、A【解題分析】

根據等差數列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【題目詳解】是等差數列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數列為單調遞減數列,則必存在,使得當時,,則,不合乎題意;若,由且數列為單調遞增數列,則對任意的,,合乎題意.所以,“,”“為遞增數列”;必要性:設,當時,,此時,,但數列是遞增數列.所以,“,”“為遞增數列”.因此,“,”是“為遞增數列”的充分而不必要條件.故選:A.【題目點撥】本題主要考查充分條件和必要條件的判斷,結合等差數列的前項和公式是解決本題的關鍵,屬于中等題.6、C【解題分析】

由基本音的諧波的定義可得,利用可得,即可判斷選項.【題目詳解】由題,所有泛音的頻率都是基本音頻率的整數倍,稱為基本音的諧波,由,可知若,則必有,故選:C【題目點撥】本題考查三角函數的周期與頻率,考查理解分析能力.7、C【解題分析】

可分成兩類,一類是3個新教師與一個老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【題目詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結對方式60+90=150種.故選:C.【題目點撥】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數.本題中有一個平均分組問題.計數時容易出錯.兩組中每組中人數都是2,因此方法數為.8、C【解題分析】分析:利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡復數,然后求解復數的模.詳解:,則,故選c.點睛:復數是高考中的必考知識,主要考查復數的概念及復數的運算.要注意對實部、虛部的理解,掌握純虛數、共軛復數這些重要概念,復數的運算主要考查除法運算,通過分母實數化轉化為復數的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.9、B【解題分析】

利用列舉法,結合古典概型概率計算公式,計算出所求概率.【題目詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【題目點撥】本小題主要考查古典概型的計算,屬于基礎題.10、A【解題分析】

畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【題目詳解】由于,,由于,令,,在↗,↘故.故選:A【題目點撥】本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.11、B【解題分析】

先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【題目詳解】故選B【題目點撥】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.12、C【解題分析】

根據等比數列的性質以及充分條件和必要條件的定義進行判斷即可.【題目詳解】解:若{an}是等比數列,則,

若,則,即成立,

若成立,則,即,

故“”是“”的充要條件,

故選:C.【題目點撥】本題主要考查充分條件和必要條件的判斷,利用等比數列的通項公式是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

先作可行域,根據解三角形得外接圓半徑,最后根據圓面積公式得結果.【題目詳解】由題意作出區域,如圖中陰影部分所示,易知,故,又,設的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【題目點撥】線性規劃問題,首先明確可行域對應的是封閉區域還是開放區域、分界線是實線還是虛線,其次確定目標函數的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離、可行域面積、可行域外接圓等等,最后結合圖形確定目標函數最值取法、值域范圍.14、1【解題分析】

本問題轉化為曲線交點個數問題,在同一直角坐標系內,畫出函數的圖象,利用數形結合思想進行求解即可.【題目詳解】問題函數在的零點個數,可以轉化為曲線交點個數問題.在同一直角坐標系內,畫出函數的圖象,如下圖所示:由圖象可知:當時,兩個函數只有一個交點.故答案為:1【題目點撥】本題考查了求函數的零點個數問題,考查了轉化思想和數形結合思想.15、【解題分析】

由二倍角公式降冪,再由兩角和的正弦公式化函數為一個角的一個三角函數形式,結合正弦函數性質可求得值域.【題目詳解】,,則,.故答案為:.【題目點撥】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數的的單調性和最值.求解三角函數的性質的性質一般都需要用三角恒等變換化函數為一個角的一個三角函數形式,然后結合正弦函數的性質得出結論.16、8(寫為也得分)【解題分析】

由,得,.當時,,所以,所以的奇數項是以1為首項,以2為公比的等比數列;其偶數項是以2為首項,以2為公比的等比數列.則,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、A【解題分析】

由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據三角形的面積公式,求得,進而化簡,即可求解.【題目詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【題目點撥】本題主要考查了正弦定理、余弦定理的應用,以及三角形的面積公式和正切的倍角公式的綜合應用,著重考查了推理與運算能力,屬于中檔試題.18、(1)見解析;(2).【解題分析】

(1)對求導,令,求導研究單調性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當時,轉化利用均值不等式即得證;當,有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【題目詳解】(1)由題意,令,則,知為的增函數,因為,,所以,存在使得,即.所以,當時,為減函數,當時,為增函數,故當時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當,即時,為的增函數,所以,,由(1)中,得,即.故滿足題意.②當,即時,有兩個不同的零點,,且,即,若時,為減函數,(*)若時,為增函數,所以的最小值為.注意到時,,且此時,(ⅰ)當時,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當時,,所以,所以由(*)知時,為減函數,所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【題目點撥】本題考查了函數與導數綜合,考查了利用導數研究函數的最值和不等式的恒成立問題,考查了學生綜合分析,轉化劃歸,分類討論,數學運算能力,屬于較難題.19、(1);(2)或.【解題分析】

(1)利用正弦定理對已知代數式化簡,根據余弦定理求解余弦值;(2)根據余弦定理求出b=1或b=3,結合面積公式求解.【題目詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【題目點撥】此題考查利用正余弦定理求解三角形,關鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據面積公式求解面積.20、(1)(2).【解題分析】

(1)利用離心率和橢圓經過的點建立方程組,求解即可.(2)把面積之比轉化為縱坐標之間的關系,聯立方程結合韋達定理可求.【題目詳解】解:(1)設焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論