




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年福建省莆田第二十五中學高三上數學期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,則()A. B. C. D.2.如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.與去年同期相比,2017年第一季度的GDP總量實現了增長.C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個D.去年同期河南省的GDP總量不超過4000億元.3.如圖所示,三國時代數學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.20 B.27 C.54 D.644.在明代程大位所著的《算法統宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?()A. B. C. D.5.若集合,則=()A. B. C. D.6.如圖,平面四邊形中,,,,為等邊三角形,現將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.7.中,,為的中點,,,則()A. B. C. D.28.已知,,,則,,的大小關系為()A. B. C. D.9.已知為定義在上的奇函數,若當時,(為實數),則關于的不等式的解集是()A. B. C. D.10.已知函數,若,則a的取值范圍為()A. B. C. D.11.如圖所示,網絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.812.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm3二、填空題:本題共4小題,每小題5分,共20分。13.已知實數,對任意,有,且,則______.14.已知圓C:經過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.15.正方體的棱長為2,是它的內切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),為正方體表面上的動點,當弦的長度最大時,的取值范圍是______.16.若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)[選修45:不等式選講]已知都是正實數,且,求證:.18.(12分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設是橢圓上且不在軸上的一個動點,為坐標原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.19.(12分)(江蘇省徐州市高三第一次質量檢測數學試題)在平面直角坐標系中,已知平行于軸的動直線交拋物線:于點,點為的焦點.圓心不在軸上的圓與直線,,軸都相切,設的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為,直線,分別與軸相交于點,.當線段的長度最小時,求的值.20.(12分)已知函數,.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數在上的最小值;(Ⅲ)若函數,當時,的最大值為,求證:.21.(12分)已知函數.(1)討論的單調性;(2)若函數在區間上的最小值為,求m的值.22.(10分)已知函數的最大值為,其中.(1)求實數的值;(2)若求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據分段函數解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據分段函數解析式求函數值,屬于基礎題.2、C【解析】
利用圖表中的數據進行分析即可求解.【詳解】對于A選項:2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,故A正確;對于B選項:與去年同期相比,2017年第一季度5省的GDP均有不同的增長,所以其總量也實現了增長,故B正確;對于C選項:2017年第一季度GDP總量由高到低排位分別是:江蘇、山東、浙江、河南、遼寧,2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,均居同一位的省有2個,故C錯誤;對于D選項:去年同期河南省的GDP總量,故D正確.故選:C.【點睛】本題考查了圖表分析,學生的分析能力,推理能力,屬于基礎題.3、B【解析】
設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數大約為,利用概率模擬列方程即可求解。【詳解】設大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。4、D【解析】
設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數列,,結合等比數列的性質可求出答案.【詳解】設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數列,且公比,則,故,,.故選:D.【點睛】本題考查數列與數學文化,考查了等比數列的性質,考查了學生的運算求解能力,屬于基礎題.5、C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.6、A【解析】
將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數學運算的能力,屬于較難題.7、D【解析】
在中,由正弦定理得;進而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應用,考查了學生的運算求解能力.8、D【解析】
構造函數,利用導數求得的單調區間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數求函數的單調區間,考查化歸與轉化的數學思想方法,考查對數式比較大小,屬于中檔題.9、A【解析】
先根據奇函數求出m的值,然后結合單調性求解不等式.【詳解】據題意,得,得,所以當時,.分析知,函數在上為增函數.又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數的性質應用,側重考查數學抽象和數學運算的核心素養.10、C【解析】
求出函數定義域,在定義域內確定函數的單調性,利用單調性解不等式.【詳解】由得,在時,是增函數,是增函數,是增函數,∴是增函數,∴由得,解得.故選:C.【點睛】本題考查函數的單調性,考查解函數不等式,解題關鍵是確定函數的單調性,解題時可先確定函數定義域,在定義域內求解.11、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.12、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由二項式定理及展開式系數的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數的求法,意在考查學生對這些知識的理解掌握水平.14、【解析】
求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【點睛】本題考查了拋物線的準線、圓的弦長公式.15、【解析】
由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設球心為,則當弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.【點睛】本題考查了空間向量線性運算與數量積的運算,正方體內切球性質應用,屬于中檔題.16、【解析】
由,得出,根據兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式18、(Ⅰ)(Ⅱ)1【解析】
(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設直線,則直線,聯立,得,聯立,得,由此即可得到本題答案.【詳解】(Ⅰ)由題可得,即,,將點代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設直線,則直線,聯立,整理得,所以,聯立,整理得,設,則,所以,所以.【點睛】本題主要考查橢圓標準方程的求法以及直線與橢圓的綜合問題,考查學生的運算求解能力.19、(1).(2)見解析.【解析】試題分析:(1)設根據題意得到,化簡得到軌跡方程;(2)設,,,,構造函數研究函數的單調性,得到函數的最值.解析:(1)因為拋物線的方程為,所以的坐標為,設,因為圓與軸、直線都相切,平行于軸,所以圓的半徑為,點,則直線的方程為,即,所以,又,所以,即,所以的方程為.(2)設,,,由(1)知,點處的切線的斜率存在,由對稱性不妨設,由,所以,,所以,,所以.令,,則,由得,由得,所以在區間單調遞減,在單調遞增,所以當時,取得極小值也是最小值,即取得最小值,此時.點睛:求軌跡方程,一般是問誰設誰的坐標然后根據題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉化為等式,例如,可以轉化為向量坐標進行運算也可以轉化為斜率來理解,然后借助韋達定理求解即可運算此類題計算一定要仔細.20、(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調遞增.則函數在上的最小值是(2)當時,令,即,令,即(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,由的單調性可得在上的最小值是(iii)當,即時,在上單調遞減,在上的最小值是(Ⅲ)當時,令,則是單調遞減函數.因為,,所以在上存在,使得,即討論可得在上單調遞增,在上單調遞減.所以當時,取得最大值是因為,所以由此可證試題解析:(Ⅰ)因為函數,且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因為函數,所以(1)當時,,所以在上單調遞增.所以函數在上的最小值是(2)當時,令,即,所以令,即,所以(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,在上單調遞減,在上單調遞增,所以在上的最小值是(iii)當,即時,在上單調遞減,所以在上的最小值是綜上所述,當時,在上的最小值是當時,在上的最小值是當時,在上的最小值是(Ⅲ)因為函數,所以所以當時,令,所以是單調遞減函數.因為,,所以在上存在,使得,即所以當時,;當時,即當時,;當時,所以在上單調遞增,在上單調遞減.所以當時,取得最大值是因為,所以因為,所以所以21、(1)見解析(2)【解析】
(1)先求導,再對m分類討論,求出的單調性;(2)對m分三種情況討論求函數在區間上的最小值即得解.【詳解】(1)若,當時,;當時.,所以在上單調遞增,在上單調遞減若.在R上單調遞增若,當時,;當時.,所以在上單調遞增,在上單調遞減(2)由(1)可知,當時,在上單調遞增,則.則不合題意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 區塊鏈技術在醫療知識產權交易中的應用探索
- 生產車間年終工作總結模版
- 宿舍管理員工作總結模版
- 酒精所致幻覺癥的臨床護理
- 為醫患帶來福祉利用區鏈技術推動全球醫療服務變革
- 中學教科研工作總結模版
- 儲罐無損檢測合同范例
- 醫療園區綜合服務平臺的建設
- 買賣兜底合同樣本
- 機器人焊接 6 項目三任務3.2教學設計
- 測溫儀及測振儀的原理及使用 課件
- 船舶操縱與避碰智慧樹知到期末考試答案2024年
- 食品加工肉類行業食品安全培訓
- 2023年中國鐵路遼寧沈陽局集團有限公司招聘考試真題
- 重慶中煙考試題庫2024
- 文印設備維修維護服務投標方案(技術標)
- 保安服務月度考核表
- 手動液壓叉車安全技術培訓
- 第十四講 建設鞏固國防和強大人民軍隊PPT習概論2023優化版教學課件
- 第七講 社會主義現代化建設的教育科技人才戰略PPT習概論2023優化版教學課件
- 上海市中小學校長職級評定方案(常用版)
評論
0/150
提交評論