重慶市一中達標名校2024屆中考押題數學預測卷含解析_第1頁
重慶市一中達標名校2024屆中考押題數學預測卷含解析_第2頁
重慶市一中達標名校2024屆中考押題數學預測卷含解析_第3頁
重慶市一中達標名校2024屆中考押題數學預測卷含解析_第4頁
重慶市一中達標名校2024屆中考押題數學預測卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市一中達標名校2024學年中考押題數學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.用教材中的計算器依次按鍵如下,顯示的結果在數軸上對應點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B2.如圖,點P是以O為圓心,AB為直徑的半圓上的動點,AB=2,設弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數關系的圖象大致是A.B.C.D.3.下列計算正確的是()A.3a2﹣6a2=﹣3B.(﹣2a)?(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a64.下列運算正確的是()A. B.C.a2?a3=a5 D.(2a)3=2a35.已知二次函數的與的不符對應值如下表:且方程的兩根分別為,,下面說法錯誤的是().A., B.C.當時, D.當時,有最小值6.下列計算正確的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2?x3=x6 D.(-x)2-x2=07.下列計算正確的有()個①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.38.有15位同學參加歌詠比賽,所得的分數互不相同,取得分前8位同學進入決賽.某同學知道自己的分數后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數 B.中位數 C.眾數 D.方差9.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數515x對于不同的x,下列關于年齡的統計量不會發生改變的是()A.眾數、中位數 B.平均數、中位數 C.平均數、方差 D.中位數、方差10.某小組7名同學在一周內參加家務勞動的時間如下表所示,關于“勞動時間”的這組數據,以下說法正確的是()勞動時間(小時)33.544.5人數1132A.中位數是4,眾數是4 B.中位數是3.5,眾數是4C.平均數是3.5,眾數是4 D.平均數是4,眾數是3.5二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知△ABC中,∠ABC=50°,P為△ABC內一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數為_____12.如圖是一位同學設計的用手電筒來測量某古城墻高度的示意圖.點P處放一水平的平面鏡,光線從點A出發經平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=15米,那么該古城墻的高度CD是_____米.13.如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A,點B,點C均落在格點上.(1)計算△ABC的周長等于_____.(2)點P、點Q(不與△ABC的頂點重合)分別為邊AB、BC上的動點,4PB=5QC,連接AQ、PC.當AQ⊥PC時,請在如圖所示的網格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點P、Q的位置是如何找到的(不要求證明).___________________________.14.在Rt△ABC內有邊長分別為2,x,3的三個正方形如圖擺放,則中間的正方形的邊長x的值為_____.15.如圖,若點的坐標為,則=________.16.方程=1的解是___.17.如圖,等邊三角形AOB的頂點A的坐標為(﹣4,0),頂點B在反比例函數(x<0)的圖象上,則k=.三、解答題(共7小題,滿分69分)18.(10分)甲、乙、丙、丁四位同學進行乒乓球單打比賽,要從中選出兩位同學打第一場比賽.若確定甲打第一場,再從其余三位同學中隨機選取一位,恰好選中乙同學的概率是.若隨機抽取兩位同學,請用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.19.(5分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數;求證:AE是⊙O的切線;當BC=4時,求劣弧AC的長.20.(8分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數量關系為:.(探究)如圖1,當點M在BC延長線上時,h1、h1、h之間有怎樣的數量關系式?并說明理由.(應用)如圖3,在平面直角坐標系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結論求出點M的坐標.21.(10分)關于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數根.求m的取值范圍;若m為正整數,求此方程的根.22.(10分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點D是BC的中點,點P是AB上一動點(不與點B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當AP的值為時,四邊形PBEC是矩形;②當AP的值為時,四邊形PBEC是菱形.23.(12分)解不等式組:,并把解集在數軸上表示出來。24.(14分)某同學用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數關系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】試題分析:在計算器上依次按鍵轉化為算式為﹣=-1.414…;計算可得結果介于﹣2與﹣1之間.故選A.考點:1、計算器—數的開方;2、實數與數軸2、A。【解題分析】如圖,∵根據三角形面積公式,當一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據勾股定理,得弦AP=x=。∴當x=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項。又∵當AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(1,)應在y=的一半上方,從而可排除C選項。故選A。3、B【解題分析】

根據整式的運算法則分別計算可得出結論.【題目詳解】選項A,由合并同類項法則可得3a2﹣6a2=﹣3a2,不正確;選項B,單項式乘單項式的運算可得(﹣2a)?(﹣a)=2a2,正確;選項C,根據整式的除法可得10a10÷2a2=5a8,不正確;選項D,根據冪的乘方可得﹣(a3)2=﹣a6,不正確.故答案選B.考點:合并同類項;冪的乘方與積的乘方;單項式乘單項式.4、C【解題分析】

根據算術平方根的定義、二次根式的加減運算、同底數冪的乘法及積的乘方的運算法則逐一計算即可判斷.【題目詳解】解:A、=2,此選項錯誤;B、不能進一步計算,此選項錯誤;C、a2?a3=a5,此選項正確;D、(2a)3=8a3,此選項計算錯誤;故選:C.【題目點撥】本題主要考查二次根式的加減和冪的運算,解題的關鍵是掌握算術平方根的定義、二次根式的加減運算、同底數冪的乘法及積的乘方的運算法則.5、C【解題分析】

分別結合圖表中數據得出二次函數對稱軸以及圖像與x軸交點范圍和自變量x與y的對應情況,進而得出答案.【題目詳解】A、利用圖表中x=0,1時對應y的值相等,x=﹣1,2時對應y的值相等,∴x=﹣2,5時對應y的值相等,∴x=﹣2,y=5,故此選項正確;B、方程ax2+bc+c=0的兩根分別是x1、x2(x1<x2),且x=1時y=﹣1;x=2時,y=1,∴1<x2<2,故此選項正確;C、由題意可得出二次函數圖像向上,∴當x1<x<x2時,y<0,故此選項錯誤;D、∵利用圖表中x=0,1時對應y的值相等,∴當x=時,y有最小值,故此選項正確,不合題意.所以選C.【題目點撥】此題主要考查了拋物線與x軸的交點以及利用圖像上點的坐標得出函數的性質,利用數形結合得出是解題關鍵.6、D【解題分析】試題解析:A原式=2x2,故A不正確;B原式=x6,故B不正確;C原式=x5,故C不正確;D原式=x2-x2=0,故D正確;故選D考點:1.同底數冪的除法;2.合并同類項;3.同底數冪的乘法;4.冪的乘方與積的乘方.7、C【解題分析】

根據積的乘方法則,多項式乘多項式的計算法則,完全平方公式,合并同類項的計算法則,乘方的定義計算即可求解.【題目詳解】①(﹣2a2)3=﹣8a6,錯誤;②(x﹣2)(x+3)=x2+x﹣6,錯誤;③(x﹣2)2=x2﹣4x+4,錯誤④﹣2m3+m3=﹣m3,正確;⑤﹣16=﹣1,正確.計算正確的有2個.故選C.【題目點撥】考查了積的乘方,多項式乘多項式,完全平方公式,合并同類項,乘方,關鍵是熟練掌握計算法則正確進行計算.8、B【解題分析】

由中位數的概念,即最中間一個或兩個數據的平均數;可知15人成績的中位數是第8名的成績.根據題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數,比較即可.【題目詳解】解:由于15個人中,第8名的成績是中位數,故小方同學知道了自己的分數后,想知道自己能否進入決賽,還需知道這十五位同學的分數的中位數.故選B.【題目點撥】此題主要考查統計的有關知識,主要包括平均數、中位數、眾數的意義.反映數據集中程度的統計量有平均數、中位數、眾數等,各有局限性,因此要對統計量進行合理的選擇和恰當的運用.9、A【解題分析】

由頻數分布表可知后兩組的頻數和為10,即可得知總人數,結合前兩組的頻數知出現次數最多的數據及第15、16個數據的平均數,可得答案.【題目詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數和為,則總人數為,故該組數據的眾數為14歲,中位數為(歲),所以對于不同的x,關于年齡的統計量不會發生改變的是眾數和中位數,故選A.【題目點撥】本題主要考查頻數分布表及統計量的選擇,由表中數據得出數據的總數是根本,熟練掌握平均數、中位數、眾數及方差的定義和計算方法是解題的關鍵.10、A【解題分析】

根據眾數和中位數的概念求解.【題目詳解】這組數據中4出現的次數最多,眾數為4,∵共有7個人,∴第4個人的勞動時間為中位數,所以中位數為4,故選A.【題目點撥】本題考查眾數與中位數的意義,一組數據中出現次數最多的數據叫做眾數;中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會出錯.二、填空題(共7小題,每小題3分,滿分21分)11、115°【解題分析】

根據三角形的內角和得到∠BAC+∠ACB=130°,根據線段的垂直平分線的性質得到AM=PM,PN=CN,由等腰三角形的性質得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到結論.【題目詳解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂線上,N在PC的中垂線上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,∴∠APC=115°,故答案為:115°【題目點撥】本題考查了線段的垂直平分線的性質,等腰三角形的性質,三角形的內角和,熟練掌握線段的垂直平分線的性質是解題的關鍵.12、10【解題分析】

首先證明△ABP∽△CDP,可得=,再代入相應數據可得答案.【題目詳解】如圖,由題意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案為10.【題目點撥】本題考查了相似三角形的應用,解題的關鍵是熟練的掌握相似三角形的應用.13、12連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【解題分析】

(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點D,E,F,G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AP,CQ即為所求.【題目詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點D,E,F,G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【題目點撥】本題涉及的知識點有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.14、1【解題分析】解:如圖.∵在Rt△ABC中(∠C=90°),放置邊長分別2,3,x的三個正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合題意,舍去),x=1.故答案為1.點睛:本題主要考查相似三角形的判定和性質、正方形的性質,解題的關鍵在于找到相似三角形,用x的表達式表示出對應邊是解題的關鍵.15、【解題分析】

根據勾股定理,可得OA的長,根據正弦是對邊比斜邊,可得答案.【題目詳解】如圖,由勾股定理,得:OA==1.sin∠1=,故答案為.16、x=﹣4【解題分析】

分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【題目詳解】去分母得:3+2x=x﹣1,解得:x=﹣4,經檢驗x=﹣4是分式方程的解.【題目點撥】此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.17、-4.【解題分析】

過點B作BD⊥x軸于點D,因為△AOB是等邊三角形,點A的坐標為(-4,0)所∠AOB=60°,根據銳角三角函數的定義求出BD及OD的長,可得出B點坐標,進而得出反比例函數的解析式.【題目詳解】過點B作BD⊥x軸于點D,∵△AOB是等邊三角形,點A的坐標為(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB?sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【題目點撥】本題考查了反比例函數圖象上點的坐標特點、等邊三角形的性質、解直角三角函數等知識,難度適中.三、解答題(共7小題,滿分69分)18、(1)13;(2)【解題分析】

1)由題意可得共有乙、丙、丁三位同學,恰好選中乙同學的只有一種情況,則可利用概率公式求解即可求得答案;

(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與恰好選中甲、乙兩位同學的情況,再利用概率公式求解即可求得答案.【題目詳解】解:(1)∵甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,確定甲打第一場,再從其余的三位同學中隨機選取一位,∴恰好選到丙的概率是:13(2)畫樹狀圖得:∵共有12種等可能的結果,恰好選中甲、乙兩人的有2種情況,∴恰好選中甲、乙兩人的概率為:2【題目點撥】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.19、(1)60°;(2)證明略;(3)【解題分析】

(1)根據∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;

(2)根據AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;

(3)連結OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計算,可得劣弧AC的長.【題目詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【題目點撥】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關鍵.20、【思考】h1+h1=h;【探究】h1-h1=h.理由見解析;【應用】所求點M的坐標為(,1)或(-,4).【解題分析】

思考:根據等腰三角形的性質,把代數式化簡可得.探究:當點M在BC延長線上時,連接,可得,化簡可得.應用:先證明,△ABC為等腰三角形,即可運用上面得到的性質,再分點M在BC邊上和在CB延長線上兩種情況討論,第一種有1+My=OB,第二種為My-1=OB,解得的縱坐標,再分別代入的解析式即可求解.【題目詳解】思考即h1+h1=h.探究h1-h1=h.理由.連接,∵∴∴h1-h1=h.應用在中,令x=0得y=3;令y=0得x=-4,則:A(-4,0),B(0,3)同理求得C(1,0),,又因為AC=5,所以AB=AC,即△ABC為等腰三角形.①當點M在BC邊上時,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x+3中求得:,∴;②當點M在CB延長線上時,由h1-h1=h得:My-1=OB,My=3+1=4,把它代入y=-3x+3中求得:,∴,綜上,所求點M的坐標為或.【題目點撥】本題結合三角形的面積和等腰三角形的性質考查了新性質的推理與證明,熟練掌握三角形的性質,結合圖形層層推進是解答的關鍵.21、(1)且;(2),.【解題分析】

(1)根據一元二次方程的定義和判別式的意義得到m≠0且≥0,然后求出兩個不等式的公共部分即可;

(2)利用m的范圍可確定m=1,則原方程化為x2+x=0,然后利用因式分解法解方程.【題目詳解】(1)∵.解得且.(2)∵為正整數,∴.∴原方程為.解得,.【題目點撥】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.22、證明見解析;(2)①9;②12.5.【解題分析】

(1)根據對角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【題目詳解】∵點D是BC的中點,∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當∠APC=90°時,四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當AP的值為9時,四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設BC=4x,AB=5x,則(4x)2+12=(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論