遼寧省葫蘆島市龍港區市級名校2024屆中考數學模擬預測題含解析_第1頁
遼寧省葫蘆島市龍港區市級名校2024屆中考數學模擬預測題含解析_第2頁
遼寧省葫蘆島市龍港區市級名校2024屆中考數學模擬預測題含解析_第3頁
遼寧省葫蘆島市龍港區市級名校2024屆中考數學模擬預測題含解析_第4頁
遼寧省葫蘆島市龍港區市級名校2024屆中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省葫蘆島市龍港區市級名校2024學年中考數學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個正多邊形的內角和為900°,那么從一點引對角線的條數是()A.3 B.4 C.5 D.62.下列“數字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個3.已知,下列說法中,不正確的是()A. B.與方向相同C. D.4.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.25.運用乘法公式計算(3﹣a)(a+3)的結果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2 D.a2﹣3a+96.在△ABC中,點D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.7.如圖,一次函數和反比例函數的圖象相交于,兩點,則使成立的取值范圍是()A.或 B.或C.或 D.或8.如圖,函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)9.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點P沿A→B→C→D的路徑移動.設點P經過的路徑長為x,PD2=y,則下列能大致反映y與x的函數關系的圖象是()A. B.C. D.10.一元二次方程x2﹣8x﹣2=0,配方的結果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=14二、填空題(共7小題,每小題3分,滿分21分)11.分式方程=1的解為_________.12.某校園學子餐廳把WIFI密碼做成了數學題,小亮在餐廳就餐時,思索了一會,輸入密碼,順利地連接到了學子餐廳的網絡,那么他輸入的密碼是______.13.如圖,在Rt△ABC中,∠C=90°,AC=8,BC=1.在邊AB上取一點O,使BO=BC,以點O為旋轉中心,把△ABC逆時針旋轉90°,得到△A′B′C′(點A、B、C的對應點分別是點A′、B′、C′、),那么△ABC與△A′B′C′的重疊部分的面積是_________.14.如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,連接BF,則圖中陰影部分的面積是_____.15.如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC16.不透明袋子中裝有5個紅色球和3個藍色球,這些球除了顏色外沒有其他差別.從袋子中隨機摸出一個球,摸出藍色球的概率為_______.17.如圖1,點P從扇形AOB的O點出發,沿O→A→B→0以1cm/s的速度勻速運動,圖2是點P運動時,線段OP的長度y隨時間x變化的關系圖象,則扇形AOB中弦AB的長度為______cm.三、解答題(共7小題,滿分69分)18.(10分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數學依據是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結AE并延長交BC的延長線于點F,連結AC.求△ACF中邊AF的中垂距.19.(5分)為了增強居民節水意識,某市自來水公司對居民用水采用以戶為單位分段計費辦法收費.若用戶的月用水量不超過15噸,每噸收水費4元;用戶的月用水量超過15噸,超過15噸的部分,按每噸6元收費.(I)根據題意,填寫下表:月用水量(噸/戶)41016……應收水費(元/戶)40……(II)設一戶居民的月用水量為x噸,應收水費y元,寫出y關于x的函數關系式;(III)已知用戶甲上個月比用戶乙多用水6噸,兩戶共收水費126元,求他們上個月分別用水多少噸?20.(8分)如圖,在平面直角坐標系中,矩形DOBC的頂點O與坐標原點重合,B、D分別在坐標軸上,點C的坐標為(6,4),反比例函數y=(x>0)的圖象經過線段OC的中點A,交DC于點E,交BC于點F.(1)求反比例函數的解析式;(2)求△OEF的面積;(3)設直線EF的解析式為y=k2x+b,請結合圖象直接寫出不等式k2x+b>的解集.21.(10分)如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.22.(10分)某學校“智慧方園”數學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經過社團成員討論發現,過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.23.(12分)某網店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網店決定降價銷售.市場調查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設該款童裝每件售價x元,每星期的銷售量為y件.(1)求y與x之間的函數關系式;(2)當每件售價定為多少元時,每星期的銷售利潤最大,最大利潤是多少元?(3)若該網店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?24.(14分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數的解析式;(1)求三角形CDE的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

n邊形的內角和可以表示成(n-2)?180°,設這個多邊形的邊數是n,就得到關于邊數的方程,從而求出邊數,再求從一點引對角線的條數.【題目詳解】設這個正多邊形的邊數是n,則

(n-2)?180°=900°,

解得:n=1.

則這個正多邊形是正七邊形.所以,從一點引對角線的條數是:1-3=4.故選B【題目點撥】本題考核知識點:多邊形的內角和.解題關鍵點:熟記多邊形內角和公式.2、C【解題分析】

根據軸對稱圖形與中心對稱圖形的概念判斷即可.【題目詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【題目點撥】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、A【解題分析】

根據平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【題目詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【題目點撥】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.4、C【解題分析】

根據左視圖是從左面看到的圖形求解即可.【題目詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【題目點撥】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.5、C【解題分析】

根據平方差公式計算可得.【題目詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【題目點撥】本題主要考查平方差公式,解題的關鍵是應用平方差公式計算時,應注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數;②右邊是相同項的平方減去相反項的平方.6、D【解題分析】

如圖,∵AD=1,BD=3,∴,當時,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據選項A、B、C的條件都不能推出DE∥BC,故選D.7、B【解題分析】

根據圖象找出一次函數圖象在反比例函數圖象上方時對應的自變量的取值范圍即可.【題目詳解】觀察函數圖象可發現:或時,一次函數圖象在反比例函數圖象上方,∴使成立的取值范圍是或,故選B.【題目點撥】本題考查了反比例函數與一次函數綜合,函數與不等式,利用數形結合思想是解題的關鍵.8、D【解題分析】

過點C作CD⊥x軸與D,如圖,先利用一次函數圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【題目詳解】如圖,過點C作CD⊥x軸與D.∵函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【題目點撥】本題主要考查一次函數的基本概念。角角邊定理、全等三角形的性質以及一次函數的應用,熟練掌握相關知識點是解答的關鍵.9、D【解題分析】解:(1)當0≤t≤2a時,∵,AP=x,∴;(2)當2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數關系的圖象是選項D中的圖象.故選D.10、C【解題分析】x2-8x=2,

x2-8x+16=1,

(x-4)2=1.

故選C.【題目點撥】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.二、填空題(共7小題,每小題3分,滿分21分)11、x=1【解題分析】分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.詳解:兩邊都乘以x+4,得:3x=x+4,解得:x=1,檢驗:x=1時,x+4=6≠0,所以分式方程的解為x=1,故答案為:x=1.點睛:此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.12、143549【解題分析】

根據題中密碼規律確定所求即可.【題目詳解】532=5×3×10000+5×2×100+5×(2+3)=151025924=9×2×10000+9×4×100+9×(2+4)=183654,863=8×6×10000+8×3×100+8×(3+6)=482472,∴725=7×2×10000+7×5×100+7×(2+5)=143549.故答案為:143549【題目點撥】本題考查有理數的混合運算,根據題意得出規律并熟練掌握運算法則是解題關鍵.13、【解題分析】

先求得OD,AE,DE的值,再利用S四邊形ODEF=S△AOF-S△ADE即可.【題目詳解】如圖,OA’=OA=4,則OD=OA’=3,OD=3∴AD=1,可得DE=,AE=∴S四邊形ODEF=S△AOF-S△ADE=×3×4-××=.故答案為.【題目點撥】本題考查的知識點是三角形的旋轉,解題的關鍵是熟練的掌握三角形的旋轉.14、6﹣π【解題分析】過F作FM⊥BE于M,則∠FME=∠FMB=90°,

∵四邊形ABCD是正方形,AB=2,

∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,

由勾股定理得:BD=2,

∵將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,

∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,

∴BM=FM=2,ME=2,

∴陰影部分的面積=×2×2+×4×2+-=6-π.

故答案為:6-π.點睛:本題考查了旋轉的性質,解直角三角形,正方形的性質,扇形的面積計算等知識點,能求出各個部分的面積是解此題的關鍵.15、60【解題分析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.16、【解題分析】分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值即其發生的概率.詳解:由于共有8個球,其中籃球有5個,則從袋子中摸出一個球,摸出藍球的概率是,故答案是.點睛:此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.17、【解題分析】

由圖2可以計算出OB的長度,然后利用OB=OA可以計算出通過弦AB的長度.【題目詳解】由圖2得通過OB所用的時間為s,則OB的長度為1×2=2cm,則通過弧AB的時間為s,則弧長AB為,利用弧長公式,得出∠AOB=120°,即可以算出AB為.【題目點撥】本題主要考查了從圖中提取信息的能力和弧長公式的運用及轉換,熟練運用公式是本題的解題關鍵.三、解答題(共7小題,滿分69分)18、(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).【解題分析】試題分析:(1)根據線段的垂直平分線的性質即可判斷.(2)如圖②中,作AE⊥BC于E.根據已知得出AE=BE,再求出BD的長,即可求出DE的長.(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為19、(Ⅰ)16;66;(Ⅱ)當x≤15時,y=4x;當x>15時,y=6x﹣30;(Ⅲ)居民甲上月用水量為18噸,居民乙用水12噸【解題分析】

(Ⅰ)根據題意計算即可;(Ⅱ)根據分段函數解答即可;(Ⅲ)根據題意,可以分段利用方程或方程組解決用水量問題.【題目詳解】解:(Ⅰ)當月用水量為4噸時,應收水費=4×4=16元;當月用水量為16噸時,應收水費=15×4+1×6=66元;故答案為16;66;(Ⅱ)當x≤15時,y=4x;當x>15時,y=15×4+(x﹣15)×6=6x﹣30;(Ⅲ)設居民甲上月用水量為X噸,居民乙用水(X﹣6)噸.由題意:X﹣6<15且X>15時,4(X﹣6)+15×4+(X﹣15)×6=126X=18,∴居民甲上月用水量為18噸,居民乙用水12噸.【題目點撥】本題考查的是用一次函數解決實際問題,此類題是近年中考中的熱點問題.注意在實際問題中,利用方程或方程組是解決問題的常用方法.20、(1)y=;(2);(3)<x<1.【解題分析】

(1)先利用矩形的性質確定C點坐標(1,4),再確定A點坐標為(3,2),根據反比例函數圖象上點的坐標特征得到k1=1,即反比例函數解析式為y=;(2)利用反比例函數解析式確定F點的坐標為(1,1),E點坐標為(,4),然后根據△OEF的面積=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF進行計算;(3)觀察函數圖象得到當<x<1時,一次函數圖象都在反比例函數圖象上方,即k2x+b>.【題目詳解】(1)∵四邊形DOBC是矩形,且點C的坐標為(1,4),∴OB=1,OD=4,∵點A為線段OC的中點,∴A點坐標為(3,2),∴k1=3×2=1,∴反比例函數解析式為y=;(2)把x=1代入y=得y=1,則F點的坐標為(1,1);把y=4代入y=得x=,則E點坐標為(,4),△OEF的面積=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF=4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)=;(3)由圖象得:不等式不等式k2x+b>的解集為<x<1.【題目點撥】本題考查了反比例函數與一次函數的交點問題:求反比例函數與一次函數的交點坐標,把兩個函數關系式聯立成方程組求解即可.21、2.7米.【解題分析】

先根據勾股定理求出AB的長,同理可得出BD的長,進而可得出結論.【題目詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的寬度CD為2.7米.【題目點撥】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數學模型,畫出準確的示意圖.領會數形結合的思想的應用.22、(1)75;4;(2)CD=4.【解題分析】

(1)根據平行線的性質可得出∠ADB=∠OAC=75°,結合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質可求出OD的值,進而可得出AD的值,由三角形內角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【題目詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【題目點撥】本題考查了相似三角形的性質、等腰三角形的判定與性質、勾股定理以及平行線的性質,解題的關鍵是:(1)利用相似三角形的性質求出OD的值;(2)利用勾股定理求出BE、CD的長度.23、(1)y=﹣30x+1;(2)每件售價定為55元時,每星期

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論