




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年四川省南充市嘉陵區中考五模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2.計算(2017﹣π)0﹣(﹣)﹣1+tan30°的結果是()A.5 B.﹣2 C.2 D.﹣13.若一個正多邊形的每個內角為150°,則這個正多邊形的邊數是()A.12 B.11 C.10 D.94.拋物線y=–x2+bx+c上部分點的橫坐標x、縱坐標y的對應值如下表所示:x…–2–1012…y…04664…從上表可知,下列說法錯誤的是A.拋物線與x軸的一個交點坐標為(–2,0) B.拋物線與y軸的交點坐標為(0,6)C.拋物線的對稱軸是直線x=0 D.拋物線在對稱軸左側部分是上升的5.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.326.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關系是()A.相交 B.相切 C.相離 D.不能確定7.如果(,均為非零向量),那么下列結論錯誤的是()A.// B.-2=0 C.= D.8.已知,用尺規作圖的方法在上確定一點,使,則符合要求的作圖痕跡是()A. B.C. D.9.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)10.若3x>﹣3y,則下列不等式中一定成立的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,一次函數y1=kx+b的圖象與反比例函數y2=(x<0)的圖象相交于點A和點B.當y1>y2>0時,x的取值范圍是_____.12.如圖,在矩形紙片ABCD中,AB=2cm,點E在BC上,且AE=CE.若將紙片沿AE折疊,點B恰好與AC上的點B1重合,則AC=_____cm.13.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關系為________.(填“>”或“<”)14.如圖,寬為的長方形圖案由8個相同的小長方形拼成,若小長方形的邊長為整數,則的值為__________.15.如圖1是我國古代著名的“趙爽弦圖”的示意圖,它是由四個全等的直角三角形圍成.若較短的直角邊BC=5,將四個直角三角形中較長的直角邊分別向外延長一倍,得到圖2所示的“數學風車”,若△BCD的周長是30,則這個風車的外圍周長是_____.16.二次根式中字母x的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).(1)求直線y=kx+m的表達式;(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標.18.(8分)如圖,在平面直角坐標系中,一次函數y=kx+b與反比例函數y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).(1)求反比例函數和一次函數的表達式;(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標.19.(8分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?20.(8分)已知,拋物線y=x2﹣x+與x軸分別交于A、B兩點(A點在B點的左側),交y軸于點F.(1)A點坐標為;B點坐標為;F點坐標為;(2)如圖1,C為第一象限拋物線上一點,連接AC,BF交于點M,若BM=FM,在直線AC下方的拋物線上是否存在點P,使S△ACP=4,若存在,請求出點P的坐標,若不存在,請說明理由;(3)如圖2,D、E是對稱軸右側第一象限拋物線上的兩點,直線AD、AE分別交y軸于M、N兩點,若OM?ON=,求證:直線DE必經過一定點.21.(8分)如圖,在中,,以邊為直徑作⊙交邊于點,過點作于點,、的延長線交于點.求證:是⊙的切線;若,且,求⊙的半徑與線段的長.22.(10分)在眉山市櫻花節期間,岷江二橋一端的空地上有一塊矩形的標語牌ABCD(如圖).已知標語牌的高AB=5m,在地面的點E處,測得標語牌點A的仰角為30°,在地面的點F處,測得標語牌點A的仰角為75°,且點E,F,B,C在同一直線上,求點E與點F之間的距離.(計算結果精確到0.1m,參考數據:≈1.41,≈1.73)23.(12分)如圖,安徽江淮集團某部門研制了繪圖智能機器人,該機器人由機座、手臂和末端操作器三部分組成,底座直線且,手臂,末端操作器,直線.當機器人運作時,,求末端操作器節點到地面直線的距離.(結果保留根號)24.在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數關系式,并求S的最大值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】
根據軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【題目點撥】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、A【解題分析】試題分析:原式=1-(-3)+=1+3+1=5,故選A.3、A【解題分析】
根據正多邊形的外角與它對應的內角互補,得到這個正多邊形的每個外角=180°﹣150°=30°,再根據多邊形外角和為360度即可求出邊數.【題目詳解】∵一個正多邊形的每個內角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數==1.故選:A.【題目點撥】本題考查了正多邊形的外角與它對應的內角互補的性質;也考查了多邊形外角和為360度以及正多邊形的性質.4、C【解題分析】當x=-2時,y=0,
∴拋物線過(-2,0),
∴拋物線與x軸的一個交點坐標為(-2,0),故A正確;
當x=0時,y=6,
∴拋物線與y軸的交點坐標為(0,6),故B正確;
當x=0和x=1時,y=6,
∴對稱軸為x=,故C錯誤;
當x<時,y隨x的增大而增大,
∴拋物線在對稱軸左側部分是上升的,故D正確;
故選C.5、B【解題分析】
根據題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【題目詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【題目點撥】本題考查的知識點是三角形中位線定理,解題的關鍵是熟練的掌握三角形中位線定理.6、A【解題分析】試題分析:根據圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關系是相交.故選A.考點:直線與圓的位置關系.7、B【解題分析】試題解析:向量最后的差應該還是向量.故錯誤.故選B.8、D【解題分析】試題分析:D選項中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點:作圖—復雜作圖.9、A【解題分析】
分順時針旋轉,逆時針旋轉兩種情形求解即可.【題目詳解】解:如圖,分兩種情形旋轉可得P′(3,4),P″(?3,?4),故選A.【題目點撥】本題考查坐標與圖形變換——旋轉,解題的關鍵是利用空間想象能力.10、A【解題分析】兩邊都除以3,得x>﹣y,兩邊都加y,得:x+y>0,故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、-2<x<-0.5【解題分析】
根據圖象可直接得到y1>y2>0時x的取值范圍.【題目詳解】根據圖象得:當y1>y2>0時,x的取值范圍是﹣2<x<﹣0.5,故答案為﹣2<x<﹣0.5.【題目點撥】本題考查了反比例函數與一次函數的交點問題,熟悉待定系數法以及理解函數圖象與不等式的關系是解題的關鍵.12、4【解題分析】
∵AB=2cm,AB=AB1,∴AB1=2cm,∵四邊形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE∴AB1=B1C∴AC=4cm.13、>【解題分析】
觀察平均氣溫統計圖可知:乙地的平均氣溫比較穩定,波動小;波動越小越穩定.【題目詳解】解:觀察平均氣溫統計圖可知:乙地的平均氣溫比較穩定,波動小;則乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.【題目點撥】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定.反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.14、16【解題分析】
設小長方形的寬為a,長為b,根據大長方形的性質可得5a=3b,m=a+b=a+=,再根據m的取值范圍即可求出a的取值范圍,又因為小長方形的邊長為整數即可解答.【題目詳解】解:設小長方形的寬為a,長為b,由題意得:5a=3b,所以b=,m=a+b=a+=,因為,所以10<<20,解得:<a<,又因為小長方形的邊長為整數,a=4、5、6、7,因為b=,所以5a是3的倍數,即a=6,b==10,m=a+b=16.故答案為:16.【題目點撥】本題考查整式的列式、取值,解題關鍵是根據矩形找出小長方形的邊長關系.15、71【解題分析】分析:由題意∠ACB為直角,利用勾股定理求得外圍中一條邊,又由AC延伸一倍,從而求得風車的一個輪子,進一步求得四個.詳解:依題意,設“數學風車”中的四個直角三角形的斜邊長為x,AC=y,則x2=4y2+52,∵△BCD的周長是30,∴x+2y+5=30則x=13,y=1.∴這個風車的外圍周長是:4(x+y)=4×19=71.故答案是:71.點睛:本題考查了勾股定理在實際情況中的應用,注意隱含的已知條件來解答此類題.16、x≤1【解題分析】
二次根式有意義的條件就是被開方數是非負數,即可求解.【題目詳解】根據題意得:1﹣x≥0,解得x≤1.故答案為:x≤1【題目點撥】主要考查了二次根式的意義和性質.性質:二次根式中的被開方數必須是非負數,否則二次根式無意義.三、解答題(共8題,共72分)17、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解題分析】
(1)將A代入反比例函數中求出m的值,即可求出直線解析式,(2)聯立方程組求出B的坐標,理由過兩點之間距離公式求出AB的長,求出P點坐標,表示出BP長即可解題.【題目詳解】解:(1)∵點A(m,2)在雙曲線上,∴m=﹣1,∴A(﹣1,2),直線y=kx﹣1,∵點A(﹣1,2)在直線y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,設P(n,0),則有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【題目點撥】本題考查了一次函數和反比例函數的交點問題,中等難度,聯立方程組,會用兩點之間距離公式是解題關鍵.18、(1)y=;y=x-2;(2)(0,0)或(4,0)【解題分析】試題分析:(1)利用待定系數法即可求得函數的解析式;(2)首先求得AB與x軸的交點,設交點是C,然后根據S△ABP=S△ACP+S△BCP即可列方程求得P的橫坐標.試題解析:(1)∵反比例函數y=(m≠0)的圖象過點A(1,1),∴1=∴m=1.∴反比例函數的表達式為y=.∵一次函數y=kx+b的圖象過點A(1,1)和B(0,-2).∴,解得:,∴一次函數的表達式為y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函數y=x-2的圖象與x軸的交點C的坐標為(2,0).∵S△ABP=1,PC×1+PC×2=1.∴PC=2,∴點P的坐標為(0,0)、(4,0).【題目點撥】本題考查了待定系數法求函數的解析式以及三角形的面積的計算,正確根據S△ABP=S△ACP+S△BCP列方程是關鍵.19、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解題分析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數的性質求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【題目詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當AD為菱形的邊時,可得P1(3,0),P3(6,3),當AD為對角線時,P2(0,3),綜上所述,滿足條件的點P坐標為(3,0)或(6,3)或(0,3).【題目點撥】本題考查四邊形綜合題、等邊三角形的性質和判定、菱形的判定和性質、二次函數的性質等知識,解題的關鍵是學會構建二次函數解決最值問題,學會用分類討論的思想思考問題,屬于中考壓軸題.20、(1)(1,0),(3,0),(0,);(2)在直線AC下方的拋物線上不存在點P,使S△ACP=4,見解析;(3)見解析【解題分析】
(1)根據坐標軸上點的特點建立方程求解,即可得出結論;(2)在直線AC下方軸x上一點,使S△ACH=4,求出點H坐標,再求出直線AC的解析式,進而得出點H坐標,最后用過點H平行于直線AC的直線與拋物線解析式聯立求解,即可得出結論;(3)聯立直線DE的解析式與拋物線解析式聯立,得出,進而得出,,再由得出,進而求出,同理可得,再根據,即可得出結論.【題目詳解】(1)針對于拋物線,令x=0,則,∴,令y=0,則,解得,x=1或x=3,∴,綜上所述:,,;(2)由(1)知,,,∵BM=FM,∴,∵,∴直線AC的解析式為:,聯立拋物線解析式得:,解得:或,∴,如圖1,設H是直線AC下方軸x上一點,AH=a且S△ACH=4,∴,解得:,∴,過H作l∥AC,∴直線l的解析式為,聯立拋物線解析式,解得,∴,即:在直線AC下方的拋物線上不存在點P,使;(3)如圖2,過D,E分別作x軸的垂線,垂足分別為G,H,設,,直線DE的解析式為,聯立直線DE的解析式與拋物線解析式聯立,得,∴,,∵DG⊥x軸,∴DG∥OM,∴,∴,即,∴,同理可得∴,∴,即,∴,∴直線DE的解析式為,∴直線DE必經過一定點.【題目點撥】本題主要考查了二次函數的綜合應用,熟練掌握二次函數與一次函數的綜合應用,交點的求法,待定系數法求函數解析式等方法式解決本題的關鍵.21、(1)證明參見解析;(2)半徑長為,=.【解題分析】
(1)已知點D在圓上,要連半徑證垂直,連結,則,所以,∵,∴.∴,∴∥.由得出,于是得出結論;(2)由得到,設,則.,,,由,解得值,進而求出圓的半徑及AE長.【題目詳解】解:(1)已知點D在圓上,要連半徑證垂直,如圖2所示,連結,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切線;(2)在和中,∵,∴.設,則.∴,.∵,∴.∴,解得=,則3x=,AE=6×-=6,∴⊙的半徑長為,=.【題目點撥】1.圓的切線的判定;2.銳角三角函數的應用.22、7.3米【解題分析】
:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店噴淋工程施工方案
- 2025電商孵化園企業入駐合同標準版孵化場地租賃協議
- 《企業培訓與發展》課件
- 2025至2031年中國側向移動鋼質防火卷簾門行業投資前景及策略咨詢研究報告
- 2025制造企業廠房租賃合同
- 2025員工股權投資信托合同示例
- 2025至2030年中國遞緯器螺燈數據監測研究報告
- 2025至2030年中國自潤滑不銹鋼關節軸承數據監測研究報告
- 煤氣柜拆除施工方案范本
- 2025至2030年中國電氣導管數據監測研究報告
- 開封文化藝術職業學院單招《職業技能測試》參考試題庫(含答案)
- 《坦克的發展歷程》課件
- 軍事研學旅行活動策劃
- (完整)有效備課上課聽課評課
- 采購管理系統的六大功能模塊
- 渠道施工課件
- 世界500強人力資源總監管理筆記
- 《瘋狂動物城》全本臺詞中英文對照
- 金融風險傳染性研究
- 電力出版社材料力學課后習題答案
- 成人體外心肺復蘇專家共識(2023版)解讀
評論
0/150
提交評論