浙江省寧波市名校2024屆中考數學最后一模試卷含解析_第1頁
浙江省寧波市名校2024屆中考數學最后一模試卷含解析_第2頁
浙江省寧波市名校2024屆中考數學最后一模試卷含解析_第3頁
浙江省寧波市名校2024屆中考數學最后一模試卷含解析_第4頁
浙江省寧波市名校2024屆中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省寧波市名校2024年中考數學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算結果等于0的是()A. B. C. D.2.如果一組數據6、7、x、9、5的平均數是2x,那么這組數據的方差為()A.4 B.3 C.2 D.13.下列各組單項式中,不是同類項的一組是()A.和 B.和 C.和 D.和34.如圖,經過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數為()A.99° B.109° C.119° D.129°5.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的側面積等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm26.甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發,走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發的時間(分鐘)之間的關系如圖所示,下列說法錯誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點2100米 D.乙距離景點420米7.cos45°的值是(

)A.

B.

C.

D.18.若關于的一元二次方程有兩個不相等的實數根,則一次函數的圖象可能是:A. B. C. D.9.如圖,△ABC的面積為12,AC=3,現將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.1010.如圖,AB是⊙O的弦,半徑OC⊥AB于點D,若⊙O的半徑為5,AB=8,則CD的長是()A.2B.3C.4D.5二、填空題(共7小題,每小題3分,滿分21分)11.如圖,∠1,∠2是四邊形ABCD的兩個外角,且∠1+∠2=210°,則∠A+∠D=____度.12.如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2018的坐標為_____.13.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內部.將AF延長交邊BC于點G.若,則(用含k的代數式表示).14.在函數y=x-4中,自變量x的取值范圍是_____.15.已知一個多邊形的每一個外角都等于,則這個多邊形的邊數是.16.如圖,已知函數y=x+2的圖象與函數y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為1.則k的值為_____.17.如圖,在平面直角坐標系中有一正方形AOBC,反比例函數經過正方形AOBC對角線的交點,半徑為()的圓內切于△ABC,則k的值為________.三、解答題(共7小題,滿分69分)18.(10分)已知關于x的一元二次方程為常數.求證:不論m為何值,該方程總有兩個不相等的實數根;若該方程一個根為5,求m的值.19.(5分)某居民小區一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.20.(8分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;21.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點D,取AC的中點E,邊結DE,OE、OD,求證:DE是⊙O的切線.22.(10分)先化簡,再在1,2,3中選取一個適當的數代入求值.23.(12分)如圖,已知AB是⊙O的直徑,CD與⊙O相切于C,BE∥CO.(1)求證:BC是∠ABE的平分線;(2)若DC=8,⊙O的半徑OA=6,求CE的長.24.(14分)如圖,兩座建筑物的水平距離BC為40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結果保留小數點后一位).參考數據sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】

各項計算得到結果,即可作出判斷.【題目詳解】解:A、原式=0,符合題意;

B、原式=-1+(-1)=-2,不符合題意;

C、原式=-1,不符合題意;

D、原式=-1,不符合題意,

故選:A.【題目點撥】本題考查了有理數的運算,熟練掌握運算法則是解本題的關鍵.2、A【解題分析】分析:先根據平均數的定義確定出x的值,再根據方差公式進行計算即可求出答案.詳解:根據題意,得:=2x解得:x=3,則這組數據為6、7、3、9、5,其平均數是6,所以這組數據的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點睛:此題考查了平均數和方差的定義.平均數是所有數據的和除以數據的個數.方差是一組數據中各數據與它們的平均數的差的平方的平均數.3、A【解題分析】

如果兩個單項式,它們所含的字母相同,并且相同字母的指數也分別相同,那么就稱這兩個單項式為同類項.【題目詳解】根據題意可知:x2y和2xy2不是同類項.故答案選:A.【題目點撥】本題考查了單項式與多項式,解題的關鍵是熟練的掌握單項式與多項式的相關知識點.4、B【解題分析】

方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據平行線的性質求得∠ACF與∠BCF的度數,∠ACF與∠BCF的和即為∠C的度數.【題目詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【題目點撥】本題考查了方位角和平行線的性質,熟練掌握方位角的概念和平行線的性質是解題的關鍵.5、B【解題分析】由三視圖可知這個幾何體是圓錐,高是4cm,底面半徑是3cm,所以母線長是(cm),∴側面積=π×3×5=15π(cm2),故選B.6、D【解題分析】

根據圖中信息以及路程、速度、時間之間的關系一一判斷即可.【題目詳解】甲的速度==70米/分,故A正確,不符合題意;設乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項不符合題意,70×30=2100,故選項C正確,不符合題意,24×60=1440米,乙距離景點1440米,故D錯誤,故選D.【題目點撥】本題考查一次函數的應用,行程問題等知識,解題的關鍵是讀懂圖象信息,靈活運用所學知識解決問題.7、C【解題分析】

本題主要是特殊角的三角函數值的問題,求解本題的關鍵是熟悉特殊角的三角函數值.【題目詳解】cos45°=.故選:C.【題目點撥】本題考查特殊角的三角函數值.8、B【解題分析】

由方程有兩個不相等的實數根,可得,解得,即異號,當時,一次函數的圖象過一三四象限,當時,一次函數的圖象過一二四象限,故答案選B.9、D【解題分析】

過B作BN⊥AC于N,BM⊥AD于M,根據折疊得出∠C′AB=∠CAB,根據角平分線性質得出BN=BM,根據三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【題目詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項D符合,

故選D.【題目點撥】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.10、A【解題分析】試題分析:已知AB是⊙O的弦,半徑OC⊥AB于點D,由垂徑定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故選A.考點:垂徑定理;勾股定理.二、填空題(共7小題,每小題3分,滿分21分)11、210.【解題分析】

利用鄰補角的定義求出∠ABC+∠BCD,再利用四邊形內角和定理求得∠A+∠D.【題目詳解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案為:210.【題目點撥】本題考查了四邊形的內角和定理以及鄰補角的定義,利用鄰補角的定義求出∠ABC+∠BCD是關鍵.12、(6054,2)【解題分析】分析:分析題意和圖形可知,點B1、B3、B5、……在x軸上,點B2、B4、B6、……在第一象限內,由已知易得AB=,結合旋轉的性質可得OA+AB1+B1C2=6,從而可得點B2的坐標為(6,2),同理可得點B4的坐標為(12,2),即點B2相當于是由點B向右平移6個單位得到的,點B4相當于是由點B2向右平移6個單位得到的,由此即可推導得到點B2018的坐標.詳解:∵在△AOB中,∠AOB=90°,OA=,OB=2,∴AB=,∴由旋轉的性質可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,∴點B2的坐標為(6,2),同理可得點B4的坐標為(12,2),由此可得點B2相當于是由點B向右平移6個單位得到的,點B4相當于是由點B2向右平移6個單位得到,∴點B2018相當于是由點B向右平移了:個單位得到的,∴點B2018的坐標為(6054,2).故答案為:(6054,2).點睛:讀懂題意,結合旋轉的性質求出點B2和點B4的坐標,分析找到其中點B的坐標的變化規律,是正確解答本題的關鍵.13、。【解題分析】試題分析:如圖,連接EG,∵,∴設,則。∵點E是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即。∴。∴(只取正值)。∴。14、x≥4【解題分析】試題分析:二次根式有意義的條件:二次根號下的數為非負數,二次根式才有意義.由題意得,.考點:二次根式有意義的條件點評:本題屬于基礎應用題,只需學生熟練掌握二次根式有意義的條件,即可完成.15、5【解題分析】

∵多邊形的每個外角都等于72°,∵多邊形的外角和為360°,∴360°÷72°=5,∴這個多邊形的邊數為5.故答案為5.16、3【解題分析】

連接OA.根據反比例函數的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點D的坐標.設A(a,a+2),B(b,b+2),則C(-b,-b-2),根據S△OAB=2,得出a-b=2

①.根據S△OAC=2,得出-a-b=2

②,①與②聯立,求出a、b的值,即可求解.【題目詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設直線y=x+2與y軸交于點D,則D(0,2),設A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2

①.過A點作AM⊥x軸于點M,過C點作CN⊥x軸于點N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2

②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【題目點撥】本題考查了反比例函數與一次函數的交點問題,反比例函數的性質,反比例函數圖象上點的坐標特征,三角形的面積,待定系數法求函數的解析式等知識,綜合性較強,難度適中.根據反比例函數的對稱性得出OB=OC是解題的突破口.17、1【解題分析】試題解析:設正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;設圓心為Q,切點為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數y=經過正方形AOBC對角線的交點,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【題目點撥】此題主要考查了正方形的性質以及三角形內切圓的性質以及待定系數法求反比例函數解析式,根據已知求出CD的長度,進而得出DN×NO=1是解決問題的關鍵.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)的值為3或1.【解題分析】

(1)將原方程整理成一般形式,令即可求解,(2)將x=1代入,求得m的值,再重新解方程即可.【題目詳解】證明:原方程可化為,,,,,不論m為何值,該方程總有兩個不相等的實數根.解:將代入原方程,得:,解得:,.的值為3或1.【題目點撥】本題考查了參數對一元二次方程根的影響.中等難度.關鍵是將根據不同情況討論參數的取值范圍.19、這個圓形截面的半徑為10cm.【解題分析】分析:先作輔助線,利用垂徑定理求出半徑,再根據勾股定理計算.解答:解:如圖,OE⊥AB交AB于點D,則DE=4,AB=16,AD=8,設半徑為R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.20、(1)2(2)當x=4時,y最小=88平方米【解題分析】(1)根據題意得方程解即可;(2)設苗圃園的面積為y,根據題意得到二次函數的解析式y=x(31-2x)=-2x2+31x,根據二次函數的性質求解即可.解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當x=時,S有最大值,S最大=;②當x=4時,S有最小值,S最小=4×(31-22)=88“點睛”此題考查了二次函數、一元二次不等式的實際應用問題,解題的關鍵是根據題意構建二次函數模型,然后根據二次函數的性質求解即可.21、詳見解析.【解題分析】試題分析:由三角形的中位線得出OE∥AB,進一步利用平行線的性質和等腰三角形性質,找出△OCE和△ODE相等的線段和角,證得全等得出答案即可.試題解析:證明:∵點E為AC的中點,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論