八年級數學知識點上冊9篇_第1頁
八年級數學知識點上冊9篇_第2頁
八年級數學知識點上冊9篇_第3頁
八年級數學知識點上冊9篇_第4頁
八年級數學知識點上冊9篇_第5頁
已閱讀5頁,還剩25頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第八年級數學知識點上冊9篇只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的學習方法,數學作為最燒腦的科目之一,需要不斷的練習。下面是小編整理的9篇《八年級數學知識點上冊》,希望能對您的寫作有一定的參考作用。

八年級上冊數學復習知識點篇一

平行四邊形

1、平行四邊形的定義

兩組對邊分別平行的四邊形叫做平行四邊形。

2、平行四邊形的性質

(1)平行四邊形的對邊平行且相等。

(2)平行四邊形相鄰的角互補,對角相等

(3)平行四邊形的對角線互相平分。

(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。

常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段

的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。

(2)推論:夾在兩條平行線間的平行線段相等。

3、平行四邊形的判定

(1)定義:兩組對邊分別平行的四邊形是平行四邊形

(2)定理1:兩組對角分別相等的四邊形是平行四邊形

(3)定理2:兩組對邊分別相等的四邊形是平行四邊形

(4)定理3:對角線互相平分的四邊形是平行四邊形

(5)定理4:一組對邊平行且相等的四邊形是平行四邊形

4、兩條平行線的距離

兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。平行線間的距離處處相等。

5、平行四邊形的面積

S平行四邊形=底邊長高=ah

初二數學課文知識點篇二

實數

一。知識框架

二。知識概念

1、算術平方根:一般地,如果一個正數_的平方等于a,即_2=a,那么正數_叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。

2、平方根:一般地,如果一個數_的平方根等于a,即_2=a,那么數_就叫做a的平方根。

3、正數有兩個平方根(一正一負)它們互為相反數;0只有一個平方根,就是它本身;負數沒有平方根。

4、正數的立方根是正數;0的立方根是0;負數的立方根是負數。

5、數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0

實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運算法則及運算律。

初二數學復習方法總結篇三

一、初中數學中考復習方法:

數學家華羅庚曾經說過:“聰明在于學習,天才在于勤奮”,勤能補拙是良訓,一分辛勞一分才。

1、復習一定要做到勤

勤動手:做題不要看,一定要算,不會的知識點寫下來,記在筆記本上。

勤動口:不會的有疑問的一定要問老師,時間不等人,在沒有時間可以浪費。而且學會與同學討論問題。

勤動耳:老師講的復習課一定要聽,不要認為這道題會,老師講就可以溜號,須知溫故可知新。

勤動腦:善于思考問題,積極思考問題——吸收、儲存信息

勤動腿:不要參加過于激烈的運動,防止受傷影響學習,但要運動,每天慢跑30分鐘即可,報至狀態。

2、初中數學復習還要強調兩個要點:

一要:動手,二要:動腦。

動腦就是要學會觀察分析問題,學會思考,不要拿到題就做,找到已知和未知之間的聯系,多問幾個為什么,多體會考的哪個知識點。

動手就是多實踐,多做題,要拳不離手曲不離口。同學就是題不離手,這兩個要點大家要記住并且要堅持住。動腦又動手,才能地發揮大腦的效率。這也是老師的經驗。

3、用心做到三個一遍

上課要認真聽一遍:聽老師講的方法知識等。

動手算一遍:按照老師的思路算一遍看看是否融會貫通。

認真想一遍:想想為什么這么做題,考的哪個知識。

4、重視簡單的學習過程

讀好一本教科書它是教學、中考的主要依據;

記好一本筆記方法知識是教師多年經驗的結晶,每人自己準備一本錯題集;

做好做凈一本習題集它是使知識拓寬;

這些看似平凡簡單,但是確實老師親身的體驗,用心觀察我們的中考、高考狀元,其實他們每天重復的不就是老師剛剛說的嗎?

沒有寶典神功,只有普普通通。最最難能可貴的是堅持。

資源可以的話,找幾套往屆的期末考試題,是自己縣區的,其他縣區也可以(考點差不多一樣的),在規定時間內,摸摸底,熟悉每個章節考的的題型,練練自己的做題效率。很多同學第一次做練習出錯,如果不及時糾正、反思,而僅僅是把答案改正,那么他沒有真正地弄明白自己到底錯在什么地方,也就沒弄明白如何應用這部分知識,最終會導致在今后遇到類似的問題一錯再錯。

初二年級數學總復習資料篇四

(一)運用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式

1、平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等于這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

(三)因式分解

1、因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2、因式分解,必須進行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等于這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。

③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

(五)分組分解法

我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式。

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義。但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)??(a+b)。

這種利用分組來分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式。

(六)提公因式法

1、在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式。當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式。

2、運用公式_2+(p+q)_+pq=(_+q)(_+p)進行因式分解要注意:

1、必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等于

一次項的系數。

2、將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:

①列出常數項分解成兩個因數的積各種可能情況;

②嘗試其中的哪兩個因數的和恰好等于一次項系數。

3、將原多項式分解成(_+q)(_+p)的形式。

(七)分式的乘除法

1、把一個分式的分子與分母的公因式約去,叫做分式的約分。

2、分式進行約分的目的是要把這個分式化為最簡分式。

3、如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分。

4、分式約分中注意正確運用乘方的符號法則,如_-y=-(y-_),(_-y)2=(y-_)2,(_-y)3=-(y-_)3.

5、分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理。當然,簡單的分式之分子分母可直接乘方。

6、注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減。

(八)分數的加減法

1、通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來。

2、通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變。

3、一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備。

4、通分的依據:分式的基本性質。

5、通分的關鍵:確定幾個分式的公分母。

通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母。

6、類比分數的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

7、同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。

8、異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然后再加減。

9、作為最后結果,如果是分式則應該是最簡分式。

(九)含有字母系數的一元一次方程

1、含有字母系數的一元一次方程

引例:一數的a倍(a≠0)等于b,求這個數。用_表示這個數,根據題意,可得方程a_=b(a≠0)

在這個方程中,_是未知數,a和b是用字母表示的已知數。對_來說,字母a是_的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。

含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。

10、同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號。

11、對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分。

12、異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化。

八年級上冊數學復習知識點篇五

四邊形的相關概念

1、四邊形

在同一平面內,由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。

2、四邊形具有不穩定性

3、四邊形的內角和定理及外角和定理

四邊形的內角和定理:四邊形的內角和等于360°。

四邊形的外角和定理:四邊形的外角和等于360°。

推論:多邊形的內角和定理:n邊形的內角和等于(n2)180°;

多邊形的外角和定理:任意多邊形的外角和等于360°。

6、設多邊形的邊數為n,則多邊形的對角線共有n(n3)條。從n邊形的一個頂點出2

發能引(n-3)條對角線,將n邊形分成(n-2)個三角形。

初二數學上冊總復習指導篇六

第一章勾股定理

1、探索勾股定理

①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2

2、一定是直角三角形嗎

①如果三角形的三邊長abc滿足a2+b2=c2,那么這個三角形一定是直角三角形

3、勾股定理的應用

第二章實數

1、認識無理數

①有理數:總是可以用有限小數和無限循環小數表示

②無理數:無限不循環小數

2、平方根

①算數平方根:一般地,如果一個正數_的平方等于a,即_2=a,那么這個正數_就叫做a的算數平方根

②特別地,我們規定:0的算數平方根是0

③平方根:一般地,如果一個數_的平方等于a,即_2=a。那么這個數_就叫做a的平方根,也叫做二次方根

④一個正數有兩個平方根;0只有一個平方根,它是0本身;負數沒有平方根

⑤正數有兩個平方根,一個是a的算數平方,另一個是—,它們互為相反數,這兩個平方根合起來可記作±

⑥開平方:求一個數a的平方根的運算叫做開平方,a叫做被開方數

3、立方根

①立方根:一般地,如果一個數_的立方等于a,即_3=a,那么這個數_就叫做a的立方根,也叫三次方根

②每個數都有一個立方根,正數的立方根是正數;0立方根是0;負數的立方根是負數。

③開立方:求一個數a的立方根的運算叫做開立方,a叫做被開方數

4、估算

①估算,一般結果是相對復雜的小數,估算有精確位數

5、用計算機開平方

6、實數

①實數:有理數和無理數的統稱

②實數也可以分為正實數、0、負實數

③每一個實數都可以在數軸上表示,數軸上每一個點都對應一個實數,在數軸上,右邊的點永遠比左邊的點表示的數大

7、二次根式

①含義:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數

②=(a≥0,b≥0),=(a≥0,b0)

③最簡二次根式:一般地,被開方數不含分母,也不含能開的盡方的因數或因式,這樣的二次根式,叫做最簡二次根式

④化簡時,通常要求最終結果中分母不含有根號,而且各個二次根式時最簡二次根式

第三章位置與坐標

1、確定位置

①在平面內,確定一個物體的位置一般需要兩個數據

2、平面直角坐標系

①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系

②通常地,兩條數軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做_軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點

③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示

④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限

⑤在直角坐標系中,對于平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對于任意一個有序實數對,都有平面上唯一的一點與它對應

3、軸對稱與坐標變化

①關于_軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關于y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數

第四章一次函數

1、函數

①一般地,如果在一個變化過程中有兩個變量_和y,并且對于變量_的每一個值,變量y都有唯一的值與它對應,那么我們稱y是_的函數其中_是自變量

②表示函數的方法一般有:列表法、關系式法和圖象法

③對于自變量在可取值范圍內的一個確定的值a,函數有唯一確定的對應值,這個對應值稱為當自變量等于a的函數值

2、一次函數與正比例函數

①若兩個變量_,y間的對應關系可以表示成y=k_+b(k、b為常數,k≠0)的形式,則稱y是_的一次函數,特別的,當b=0時,稱y是_的正比例函數

3、一次函數的圖像

①正比例函數y=k_的圖像是一條經過原點(0,0)的直線。因此,畫正比例函數圖像是,只要再確定一點,過這個點與原點畫直線就可以了

②在正比例函數y=k_中,當k0時,y的值隨著_值的增大而減小;當k0時,y的值隨著_的值增大而減小

③一次函數y=k_+b的圖像是一條直線,因此畫一次函數圖像時,只要確定兩個點,再過這兩點畫直線就可以了。一次函數y=k_+b的圖像也稱為直線y=k_+b

④一次函數y=k_+b的圖像經過點(0,b)。當k0時,y的值隨著_值的增大而增大;當k0時,y的值隨著_值的增大而減小

4、一次函數的應用

①一般地,當一次函數y=k_+b的函數值為0時,相應的自變量的值就是方程k_+b=0的解,從圖像上看,一次函數y=k_+b的圖像與_軸交點的橫坐標就是方程k_+b=0

第五章二元一次方程組

1、認識二元一次方程組

①含有兩個未知數,并且所含有未知數的項的次數都是1的方程叫做二元一次方程

②共含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組

③二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解

2、求解二元一次方程組

①將其中一個方程中的某個未知數用含有另一個未知數的代數式表示出來,并代入另個方程中,從而消去一個未知數,化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡稱代入法

②通過兩式子加減,消去其中一個未知數,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法

3、應用二元一次方程組

①雞兔同籠

4、應用二元一次方程組

①增減收支

5、應用二元一次方程組

①里程碑上的數

6、二元一次方程組與一次函數

①一般地,以一個二元一次方程的解為坐標的點組成的圖像與相應的一次函數的圖像相同,是一條直線

②一般地,從圖形的角度看,確定兩條直線相交點的坐標,相當于求相應的二元一次方程組的解,解一個二元一次方程組相當于確定相應兩條直線交點的坐標

7、用二元一次方程組確定一次函數表達式

①先設出函數表達式,再根據所給條件確定表達式中未知的系數,從而得到函數表達式的方法,叫做待定系數法。

8、三元一次方程組

①在一個方程組中,各個式子都含有三個未知數,并且所含有未知數的項的次數都是1,這樣的方程叫做三元一次方程

②像這樣,共含有三個未知數的三個一次方程所組成的一組方程,叫做三元一次方程組

③三元一次方程組中各個方程的公共解,叫做這個三元一次方程組的解。

第六章數據的分析

1、平均數

①一般地,對于n個數_1_2.。._n,我們把(_1+_2+···+_n)叫做這n個數的算數平均數,簡稱平均數記為。

②在實際問題中,一組數據里的各個數據的“重要程度”未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數

2、中位數與眾數

①中位數:一般地,n個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數

②一組數據中出現次數最多的那個數據叫做這組數據的眾數

③平均數、中位數和眾數都是描述數據集中趨勢的統計量

④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。

⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息

⑥各個數據重復次數大致相等時,眾數往往沒有特別意義

3、從統計圖分析數據的集中趨勢

4、數據的離散程度

①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對于集中趨勢的偏離情況。一組數據中最大數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量

②數學上,數據的離散程度還可以用方差或標準差刻畫

③方差是各個數據與平均數差的平方的平均數

④其中是_1,_2.。.。._n平均數,s2是方差,而標準差就是方差的算術平方根

⑤一般而言,一組數據的極差、方差或標準差越小,這組數據就越穩定。

第七章平行線的證明

1、為什么要證明

①實驗、觀察、歸納得到的結論可能正確,也可能不正確,因此,要判斷一個數學結論是否正確,僅僅依靠實驗、觀察、歸納是不夠的,必須進行有根有據的證明

2、定義與命題

①證明時,為了交流方便,必須對某些名稱和術語形成共同的認識,為此,就要對名稱和術語的含義加以描述,做出明確的規定,也就是給它們的定義

②判斷一件事情的句子,叫做命題

③一般地,每個命題都由條件和結論兩部分組成。條件是已知的選項,結論是已知選項推出的事項。命題通常可以寫成“如果。.。.那么。.。.。”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結論

④正確的命題稱為真命題,不正確的命題稱為假命題

⑤要說明一個命題是假命題,常常可以舉出一個例子,使它具備命題的條件,而不具有命題的結論,這種例子稱為反例

⑥歐幾里得在編寫《原本》時,挑選了一部分數學名詞和一部分公認的真命題作為證實其他命題的出發點和依據。其中數學名詞稱為原名,公認的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進行判斷

⑦演繹推理的過程稱為證明,經過證明的真命題稱為定理,每個定理都只能用公理、定義和已經證明為真的命題來證明

a.本套教科書選用九條基本事實作為證明的出發點和依據,其中八條是:兩點確定一條直線

b.兩點之間線段最短

c.同一平面內,過一點有且只有一條直線與已知直線垂直

d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡述為:同位角相等,兩直線平行)

e.過直線外一點有且只有一條直線與這條直線平行

f.兩邊及其夾角分別相等的兩個三角形全等

g.兩角及其夾邊分別相等的兩個三角形全等

h.三邊分別相等的兩個三角形全等

⑧此外,數與式的運算律和運算法則、等式的有關性質,以及反映大小關系的有關性質都可以作為證明的依據

⑨定理:同角(等角)的補角相等

同角(等角)的余角相等

三角形的任意兩邊之和大于第三邊

對頂角相等

3、平行線的判定

①定理:兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行,簡述為:內錯角相等,兩直線平行

②定理:兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行,簡述為:同旁內角互補,兩直線平行。

4、平行線的性質

①定理:兩條平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等

②定理:兩條平行直線被第三條直線所截,內錯角相等。簡述為:兩直線平行,內錯角相等

③定理:兩條平行直線被第三條直線所截,同旁內角互補。簡述為:兩直線平行,同旁內角互補

④定理:平行于同一條直線的兩條直線平行

5、三角形內角和定理

①三角形內角和定理:三角形的內角和等于180°

②定理:三角形的一個外角等于和它不相鄰的兩個內角的和

定理:三角形的一個外角大于任何一個和它不相鄰的內角

③我們通過三角形的內角和定理直接推導出兩個新定理。像這樣,由一個基本事實或定理直接推出的定理,叫做這個基本事實或定理的推論,推論可以當定理使用。

數學八年級上冊復習資料篇七

全等三角形

命題定義:可以判斷真假的陳述句叫命題,正確的命題叫真命題,

錯誤的命題叫假命題;一個命題分題設和結論兩部分。

公理:有些命題的正確性是人們在長期實踐過程中總結出來的,

并把他作為判斷其他命題真假的原始依據,這樣的真命題

叫公理。

定理:從公理或其他真命題出發,用邏輯推理的方法證明它們是正

確的,并可以作為判斷命題其他真假的依據,這樣的命題叫

定理。

互逆命題:兩個命題中,如果第一個命題的題設是第二個命題的

結論,而第一個命題結論是第二個命題的題設,那么

這兩個命題叫做互逆命題。如果把其中一個叫做原命

題,那么另一個命題就叫做逆命題。

互逆定理:如果一個定理的逆命題也是定理,那么這兩個定理叫

做互逆定理,其中一個定理叫做另一個定理的逆定

理。

畫線段畫角五種基本尺規作圖畫垂直平分線

過已知點畫垂線畫角平分線

1、等腰三角形的判定:①如果一個三角形有兩個角相等,那么這個三角

形所對的邊也相等;②如果三角形的一條邊的平方等于另外兩條邊的

平方和,那么這個三角形是直角三角形。

①性質:角平分線上的點到角兩邊的距離相等

2、

②判定:到一個角兩邊距離相等的點在角平分線上

3、①性質:線段垂直平分線上的點到線段兩個端點的距

離相等

②判定:到線段兩個端點的距離相等的點,在這條線

段的垂直平分線上。

1、全等形:能夠完全重合的兩個圖形叫做全等形。

2、全等三角形:

定義:能夠完全重合的兩個三角形叫做全等三角形。

表示方法:ABC≌DEF

全等三角形的性質:全等三角形的對應邊相等

全等三角形的對應角相等

3、三角形全等的判定:

No.1邊邊邊(SAS):三邊對應相等的兩個三角形全等。

No.2角邊角(SAS):兩邊和它們的夾角對應相等的兩個三角形全等。

No.3角邊角(ASA):兩邊和他們的夾角對應相等的兩個三角形全等。

No.4角角邊(AAS)個三角形全等。

No.5斜邊,直角邊(HL):斜邊和直角邊對應相等的兩個三角形全等。

數學八年級上冊復習資料篇八

勾股定理

一、直角三角形三邊的關系c1、勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。b幾何語言:如圖,在Rt△ABC中,∠C=90o,Ba∠A、∠B、∠C所對的邊分別是a、b、c

則有:a2+b2=c2。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論