蘇州市重點中學2023年數學高二上期末達標檢測模擬試題含解析_第1頁
蘇州市重點中學2023年數學高二上期末達標檢測模擬試題含解析_第2頁
蘇州市重點中學2023年數學高二上期末達標檢測模擬試題含解析_第3頁
蘇州市重點中學2023年數學高二上期末達標檢測模擬試題含解析_第4頁
蘇州市重點中學2023年數學高二上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

蘇州市重點中學2023年數學高二上期末達標檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題,,則A., B.,C., D.,2.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.3.某企業為節能減排,用萬元購進一臺新設備用于生產.第一年需運營費用萬元,從第二年起,每年運營費用均比上一年增加萬元,該設備每年生產的收入均為萬元.設該設備使用了年后,年平均盈利額達到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.4.已知命題,,則()A., B.,C., D.,5.均勻壓縮是物理學一種常見現象.在平面直角坐標系中曲線均勻壓縮,可用曲線上點的坐標來描述.設曲線上任意一點,若將曲線縱向均勻壓縮至原來的一半,則點的對應點為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點的對應點為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.6.已知是空間的一個基底,若,,若,則()A B.C.3 D.7.2021年是中國共產黨百年華誕,3月24日,中宣部發布中國共產黨成立100周年慶祝活動標識(圖1),標識由黨徽、數字“100”“1921”“2021”和56根光芒線組成,生動展現中國共產黨團結帶領中國人民不忘初心、牢記使命、艱苦奮斗的百年光輝歷程.其中“100”的兩個“0”設計為兩個半徑為的相交大圓,分別內含一個半徑為1的同心小圓,且同心小圓均與另一個大圓外切(圖2).已知,在兩大圓的區域內隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.8.考試停課復習期間,小王同學計劃將一天中的7節課全部用來復習4門不同的考試科目,每門科目復習1或2節課,則不同的復習安排方法有()種A.360 B.630C.2520 D.151209.已知數列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.910.已知E、F分別為橢圓的左、右焦點,傾斜角為的直線l過點E,且與橢圓交于A,B兩點,則的周長為A.10 B.12C.16 D.2011.五行學說是中華民族創造的哲學思想.古代先民認為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關系的概率是()A. B.C. D.12.設是虛數單位,則復數對應的點在平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知、分別為雙曲線的左、右焦點,為雙曲線右支上一點,滿足,直線與圓有公共點,則雙曲線的離心率的取值范圍是___________.14.寫出一個數列的通項公式____________,使它同時滿足下列條件:①,②,其中是數列的前項和.(寫出滿足條件的一個答案即可)15.如圖莖葉圖記錄了A、兩名營業員五天的銷售量,若A的銷售量的平均數比的銷售量的平均數多1,則A營業員銷售量的方差為___________.16.將邊長為2的正方形繞其一邊所在的直線旋轉一周,所得的圓柱體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的左、右焦點為,,,離心率為(1)求橢圓的標準方程(2)的左頂點為,過右焦點的直線交橢圓于,兩點,記直線,,的斜率分別為,,,求證:18.(12分)設銳角三角形ABC的內角A、B、C的對邊分別為a、b、c,.(1)求B的大小(2)若,,求b.19.(12分)設,為雙曲線:(,)的左、右頂點,直線過右焦點且與雙曲線的右支交于,兩點,當直線垂直于軸時,△為等腰直角三角形(1)求雙曲線的離心率;(2)若雙曲線左支上任意一點到右焦點點距離的最小值為3,①求雙曲線方程;②已知直線,分別交直線于,兩點,當直線傾斜角變化時,以為直徑的圓是否過軸上的定點,若過定點,求出定點的坐標;若不過定點,請說明理由20.(12分)如圖,菱形的邊長為4,,矩形的面積為8,且平面平面(1)證明:;(2)求C到平面的距離.21.(12分)已知圓C:,直線l:.(1)當a為何值時,直線l與圓C相切;(2)當直線l與圓C相交于A,B兩點,且時,求直線l的方程.22.(10分)已知拋物線C:的焦點為F,為拋物線C上一點,且(1)求拋物線C的方程:(2)若以點為圓心,為半徑圓與C的準線交于A,B兩點,過A,B分別作準線的垂線交拋物線C于D,E兩點,若,證明直線DE過定點

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據全稱命題與特稱命題互為否定的關系,即可求解,得到答案【詳解】由題意,根據全稱命題與特稱命題的關系,可得命題,,則,,故選A【點睛】本題主要考查了含有一個量詞的否定,其中解答中熟記全稱命題與特稱性命題的關系是解答的關鍵,著重考查了推理與運算能力,屬于基礎題2、B【解析】雙曲線的離心率為,漸進性方程為,計算得,故漸進性方程為.【考點定位】本小題考查了離心率和漸近線等雙曲線的性質.3、D【解析】設該設備第年的營運費為萬元,利用為等差數列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設該設備第年的營運費為萬元,則數列是以2為首項,2為公差的等差數列,則,則該設備使用年的營運費用總和為,設第n年的盈利總額為,則,故年平均盈利額為,因為,當且僅當時,等號成立,故當時,年平均盈利額取得最大值4.故選:D.【點睛】本題考查等差數列在實際問題中的應用,注意根據題設條件概括出數列的類型,另外用基本不等式求最值時注意檢驗等號成立的條件.4、C【解析】利用全稱量詞命題的否定可得出結論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.5、C【解析】設單位圓上一點為,經過題設變換后坐標為,則,代入圓的方程即可得曲線方程.【詳解】由題設,單位圓上一點坐標為,經過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應坐標為,∴,則,故中,可得:.故選:C.6、C【解析】由,可得存在實數,使,然后將代入化簡可求得結果【詳解】,,因為,所以存在實數,使,所以,所以,所以,得,,所以,故選:C7、B【解析】求出兩圓相交公共部分兩個弓形面積,結合兩圓面積可得概率【詳解】如圖,是兩圓心,是兩圓交點坐標,四邊形邊長均為,又,所以,所以,四邊形是正方形,,弓形面積為,兩個弓形面積為,兩圓涉及部分面積為所以所求概率為故選:B8、C【解析】,先安排復習節的科目,然后安排其余科目,由此計算出不同的復習安排方法數.【詳解】第步,門科目選門,安排節課,方法數有種,第步,安排其余科目,每門科目節課,方法數有種,所以不同的復習安排方法有種.故選:C9、B【解析】首先地推公式變形,得,,求得數列的通項公式后,再解不等式.【詳解】因為,兩邊取倒數,得,整理為:,,所以數列是首項為1,公差為4的等差數列,,,因為,即,得,解得:,,所以的最大值是7.故選:B10、D【解析】利用橢圓的定義即可得到結果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點睛】本題考查橢圓簡單性質的應用,橢圓的定義的應用,三角形的周長的求法,屬于基本知識的考查11、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數,再計算其中兩種元素恰是相生關系的基本事件數,利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C12、A【解析】計算出復數即可得出結果.【詳解】由于,對應的點的坐標為,在第一象限,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過點作于,過點作于,利用雙曲線的定義以及勾股定理可求得,由已知可得,可得出關于、的齊次不等式,結合可求得的取值范圍.【詳解】過點作于,過點作于,因為,所以,又因為,所以,故,又因為,且,所以,因此,所以,又因為直線與圓有公共點,所以,故,即,則,所以,又因為雙曲線的離心率,所以.故答案為:.14、(答案合理即可)【解析】當時滿足,利用作差比較法即可證明.【詳解】解:當時滿足條件①②,證明如下:因為,所以;當時,;當時,;綜上,.故答案為:(答案合理即可).15、44【解析】先根據題意求出x的值,進而利用方差公式求出A營業員銷售量的方差.【詳解】由A的平均數比的平均數多1知,A的總量比的總量多5,所以,A的平均數為17,方差為.故答案為:4416、【解析】依題意可得圓柱的底面半徑、高,再根據圓柱的體積公式計算可得;【詳解】解:依題意可得圓柱的底面半徑,高,所以;故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】(1)由可求出,結合離心率可知,進而可求出,即可求出標準方程.(2)由題意知,,則由直線的點斜式方程可得直線的解析式為,與橢圓進行聯立,設,,結合韋達定理可得,從而由斜率的計算公式對進行整理化簡從而可證明.【詳解】(1)解:因為,所以.又因為離心率,所以,則,所以橢圓的標準方程是(2)證明:由題意知,,,則直線的解析式為,代入橢圓方程,得設,,則.又因為,,所以【點睛】關鍵點睛:本題第二問的關鍵是聯立直線和橢圓的方程后,結合韋達定理,用表示交點橫坐標的和與積,從而代入進行整理化簡.18、(1);(2)【解析】(1)由正弦定理,可得,進而可求出和角;(2)利用余弦定理,可得,即可求出.【詳解】(1)由,得,因為,所以,又因為B為銳角,所以(2)由余弦定理,可得,解得【點睛】本題考查正弦、余弦定理在解三角形中的運用,考查學生的計算求解能力,屬于基礎題.19、(1);(2)①;②定點有兩個,【解析】(1)由雙曲線方程有、、,根據已知條件有,即可求離心率.(2)①由題設有,結合(1)求雙曲線參數,寫出雙曲線方程即可;②由題設可設為,,,聯立雙曲線方程結合韋達定理求,,,,再由、的方程求,坐標,若在為直徑的圓上點,由結合向量垂直的坐標表示列方程,進而求出定點坐標.【小問1詳解】由題設,若,且,又△為等腰直角三角形,∴,即,則又,可得.【小問2詳解】由題設,,由(1)有,則,即,①由上可知:雙曲線方程為.②由①知:,且直線的斜率不為0,設為,,,聯立直線與雙曲線得:,∴,,則,∴,∴直線為;直線為;∴,,若在為直徑的圓上點,∴,且,∴,令,則,∴,即,∴或,即過定點.【點睛】關鍵點點睛:第二問的②,設直線為,聯立直線與雙曲線,應用韋達定理求,,,,進而根據、的方程求,坐標,再由圓的性質及向量垂直的坐標表示求定點坐標.20、(1)證明見解析.(2)【解析】(1)利用線面垂直的性質證明出;(2)利用等體積轉換法,先求出O到平面AEF的距離,再求C到平面的距離.【小問1詳解】在矩形中,.因為平面平面,平面平面,所以平面,所以.【小問2詳解】設AC與BD的交點為O,則C到平面AEF的距離為O到平面AEF的距離的2倍.因為菱形ABCD的邊長為4且,所以.因為矩形BDFE的面積為8,所以BE=2.,,則三棱錐的體積.在△AEF中,,所以.記O到平面AEF的距離為d.由得:,解得:,所以C到平面AEF的距離為.21、(1);(2)或.【解析】(1)根據圓心到直線的距離d等于圓的半徑r即可求得答案;(2)由并結合(1)即可求得答案.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線:距離,即,可得:.【小問2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論