




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
西藏林芝市第二中學2023-2024學年高二上數學期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.(5分)已知集合A={x|?2<x<4},集合B={x|(x?6)(x+1)<0},則A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|?2<x<?1} D.{x|?1<x<4}2.設雙曲線的虛軸長為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.3.從0,2中選一個數字,從1,3,5中選兩個數字,組成無重復數字的三位數,其中偶數的個數為()A.24 B.18C.12 D.64.下列說法中正確的是()A.棱柱的側面可以是三角形B.棱臺的所有側棱延長后交于一點C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等5.圓與直線的位置關系是()A.相交 B.相切C.相離 D.不能確定6.已知M、N為橢圓上關于短軸對稱的兩點,A、B分別為橢圓的上下頂點,設、分別為直線的斜率,則的最小值為()A. B.C. D.7.橢圓的離心率為()A. B.C. D.8.如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.9.已知點F是雙曲線的左焦點,點E是該雙曲線的右頂點,過F作垂直于x軸的直線與雙曲線交于G、H兩點,若是銳角三角形,則該雙曲線的離心率e的取值范圍是()A. B.C. D.10.下列通項公式中,對應數列是遞增數列的是()A B.C. D.11.在矩形中,,在該矩形內任取一點M,則事件“”發生的概率為()A. B.C. D.12.設等差數列,的前n項和分別是,,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是___________.14.已知拋物線的焦點為,準線為,過點的直線與拋物線交于A,B兩點(點B在第一象限),與準線交于點P.若,,則____________.15.已知點在圓C:()內,過點M的直線被圓C截得的弦長最小值為8,則______16.若橢圓的焦點在軸上,且長軸長是短軸長的2倍,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為F,點在拋物線上.(1)求拋物線的標準方程;(2)過點的直線交拋物錢C于A,B兩點,O為坐標原點,記直線OA,OB的斜率分別,,求證:為定值.18.(12分)已知三角形的三個頂點,求邊所在直線的方程,以及該邊上中線所在直線的方程19.(12分)在平面直角坐標系xOy中,已知橢圓E:(a>b>0)的左、右焦點分別為F1,F2,離心率為.點P是橢圓上的一動點,且P在第一象限.記的面積為S,當時,.(1)求橢圓E的標準方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點M,N,記和的面積分別為S1和S2.(i)求證:存在常數λ,使得成立;(ii)求S2-S1的最大值.20.(12分)已知數列滿足,,,.從①,②這兩個條件中任選一個填在橫線上,并完成下面問題.(1)寫出、,并求數列的通項公式;(2)求數列的前項和.21.(12分)已知函數(1)若在上單調遞減,求實數a的取值范圍(2)若是方程的兩個不相等的實數根,證明:22.(10分)已知為數列的前n項和,,且,,其中為常數.(1)求證:數列為等差數列;(2)是否存在,使得是等差數列?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由(x?6)(x+1)<0,得?1<x<6,從而有B={x|?1<x<6},所以A∩B={x|?1<x<4},故選D2、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.3、C【解析】根據題意,結合計數原理中的分步計算,以及排列組合公式,即可求解.【詳解】根據題意,要使組成無重復數字的三位數為偶數,則從0,2中選一個數字為個位數,有種可能,從1,3,5中選兩個數字為十位數和百位數,有種可能,故這個無重復數字的三位數為偶數的個數為.故選:C.4、B【解析】根據棱柱、棱臺、球、正棱錐結構特征依次判斷選項即可.【詳解】棱柱的側面都是平行四邊形,A不正確;棱臺是由對應的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應該為正棱錐的側棱長都相等,所以D不正確.故選:B.5、B【解析】用圓心到直線的距離與半徑的大小判斷【詳解】解:圓的圓心到直線的距離,等于圓的半徑,所以圓與直線相切,故選:B6、A【解析】利用為定值即可獲解.【詳解】設則又,所以所以當且僅當,即,取等故選:A7、A【解析】由橢圓標準方程求得,再計算出后可得離心率【詳解】在橢圓中,,,,因此,該橢圓的離心率為.故選:A.【點睛】本題考查求橢圓的離心率,根據橢圓標準方程求出即可8、C【解析】畫出直觀圖,利用椎體體積公式進行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C9、B【解析】根據是等腰三角形且為銳角三角形,得到,即,解得離心率范圍.【詳解】,當時,,,不妨取,,是等腰三角形且為銳角三角形,則,即,,即,,解得,故.故選:B.10、C【解析】根據數列單調性的定義逐項判斷即可.【詳解】對于A,B選項對應數列是遞減數列.對于C選項,,故數列是遞增數列.對于D選項,由于.所以數列不是遞增數列故選:C.11、D【解析】利用幾何概型的概率公式,轉化為面積比直接求解.【詳解】以AB為直徑作圓,當點M在圓外時,.所以事件“”發生的概率為.故選:D12、B【解析】利用求解.【詳解】解:因為等差數列,的前n項和分別是,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據拋物線的定義知點P到焦點距離等于到準線的距離即可求解.【詳解】因為拋物線方程為,所以準線方程,所以點到準線的距離為,故點到該拋物線焦點的距離.故答案為:14、【解析】過點作,垂足為,過點作,垂足為,然后根據拋物線的定義和三角形相似的關系可求得結果【詳解】過點作,垂足為,過點作,垂足為,由拋物線的定義可知,,不妨設,因為,所以,因為∽,所以,即,所以,所以,因為與反向,所以.故答案為:15、【解析】根據點與圓的位置關系,可求得r的取值范圍,再利用過圓內一點最短的弦,結合弦長公式可得到關于r的方程,求解即可.【詳解】由點在圓C:內,且所以,又,解得過圓內一點最短的弦,應垂直于該定點與圓心的連線,即圓心到直線的距離為又,所以,解得故答案為:16、4【解析】根據橢圓焦點在軸上方程的特征進行求解即可.【詳解】因為橢圓的焦點在軸上,所以有,因為長軸長是短軸長的2倍,所以有,故答案為:4三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)將點代入拋物線方程即可求解;(2)當直線AB的斜率存在時,設直線AB的方程為,,將直線方程與拋物線方程聯立利用韋達定理即可求出的值;當直線AB的斜率不存在時,由過點即可求出點和點的坐標,即可求出的值.【小問1詳解】將點代入得,,∴拋物線的標準方程為.【小問2詳解】當直線AB斜率存在時,設直線AB的方程為,,將聯立得,,由韋達定理得:,,,當直線AB的斜率不存在時,由直線過點,則,,,,綜上所述可知,為定值為.18、;【解析】根據兩點式方程和中點坐標公式求解,并化為一般式方程即可.【詳解】解:過的兩點式方程為,整理得即邊所在直線的方程為,邊上的中線是頂點A與邊中點M所連線段,由中點坐標公式可得點M的坐標為,即過,的直線的方程為,即整理得所以邊上中線所在直線的方程為19、(1)(2)(i)存在常數,使得成立;(ii)的最大值為.【解析】(1)求點P的坐標,再利用面積和離心率,可以求出,然后就可以得到橢圓的標準方程;(2)設點的坐標和直線方程,聯立方程,解出的y坐標值與P的坐標之間的關系,求以焦距為底邊的三角形面積;利用均值定理當且僅當時取等號,求最大值.【小問1詳解】先求第一象限P點坐標:,所以P點的坐標為,所以,所以橢圓E的方程為【小問2詳解】設,易知直線和直線的坐標均不為零,因為,所以設直線的方程為,直線的方程為,由所以,因為,,所以所以同理由所以,因為,,所以所以,因為,,(i)所以所以存在常數,使得成立.(ii),當且僅當,時取等號,所以的最大值為.20、(1)條件選擇見解析,,,(2)【解析】(1)選①,推導出數列為等比數列,確定該數列的首項和公比,可求得,并可求得、;選②,推導出數列是等比數列,確定該數列的首項和公比,可求得,可求得,由此可得出、;(2)求得,,分為偶數、奇數兩種情況討論,結合并項求和法以及等比數列求和公式可求得.【小問1詳解】解:若選①,,且,故數列是首項為,公比為的等比數列,,故;若選②,,所以,,且,故數列是以為首項,以為公比的等比數列,所以,,故,所以,,故,.【小問2詳解】解:由(1)可知,則,所以,.當為偶數時,;當為奇數時,.綜上所述,.21、(1);(2)詳見解析【解析】(1)首先求函數的導數,結合函數的導數與函數單調性的關系,參變分離后,轉化為求函數的最值,即可求得實數的取值范圍;(2)將方程的實數根代入方程,再變形得到,利用分析法,轉化為證明,通過換元,構造函數,轉化為利用導數證明,恒成立.【小問1詳解】,,在上單調遞減,在上恒成立,即,即在,設,,,當時,,函數單調遞增,當時,,函數單調遞減,所以函數的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數根,即又2個不同實數根,且,,得,即,所以,不妨設,則,要證明,只需證明,即證明,即證明,令,,令函數,所以,所以函數在上單調遞減,當時,,所以,,所以,即,即得【點睛】本題考查利用導數的單調性求參數的取值范圍,以及證明不等式,屬于難題,導數中的雙變量問題,往往采用分析法,轉化為函數與不等式的關系,通過構造函數,結合函數的導數,即可證明.22、(1)詳見解析;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 止痛藥物應用總結模版
- 平衡的穩定性教學設計
- 機械工程材料基礎第三章鋼的熱處理
- 人教版三年級語文下冊《口語交際:春游去哪兒玩》教學課件
- 醫院人事管理課件
- 腫瘤機器技術應用與發展
- 提高課堂教學的有效性心得體會模版
- 本學期少先隊工作總結模版
- 手術室傳染病分管規范
- 初一上英語教學總結模版
- CJT 489-2016 塑料化糞池 標準
- 2023-2024學年廣東省惠州市惠城區八年級(下)期末數學試卷(含答案)
- 2022-2023學年廣東省廣州市番禺區教科版(廣州)四年級下冊期末測試英語題卷(無答案)
- 紡紗廠管理制度
- 2024年福建省莆田市初中八年級教學質量檢測生物試卷
- 醫療器械倉庫管理課件
- 中華水文化智慧樹知到期末考試答案2024年
- 整套電子課件:液壓傳動與氣動技術(第二版)
- 《人類起源的演化過程》閱讀測試題及答案
- 2024年03月甘肅省文化和旅游廳直屬事業單位2024年公開招考11名人員筆試參考題庫附帶答案詳解
- MOOC 民事訴訟法學-西南政法大學 中國大學慕課答案
評論
0/150
提交評論