




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
達州市重點中學2023年開學摸底考試高三數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設命題:,,則為A., B.,C., D.,2.已知集合,,則等于()A. B. C. D.3.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)4.為比較甲、乙兩名高中學生的數學素養,對課程標準中規定的數學六大素養進行指標測驗(指標值滿分為100分,分值高者為優),根據測驗情況繪制了如圖所示的六大素養指標雷達圖,則下面敘述不正確的是()A.甲的數據分析素養優于乙 B.乙的數據分析素養優于數學建模素養C.甲的六大素養整體水平優于乙 D.甲的六大素養中數學運算最強5.下圖是我國第24~30屆奧運獎牌數的回眸和中國代表團獎牌總數統計圖,根據表和統計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數一直保持上升趨勢B.折線統計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數、銀牌數、銅牌數都有所下降D.統計圖中前六屆奧運會中國代表團的奧運獎牌總數的中位數是54.56.設i是虛數單位,若復數()是純虛數,則m的值為()A. B. C.1 D.37.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.28.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種9.設函數的定義域為,命題:,的否定是()A., B.,C., D.,10.在平行四邊形中,若則()A. B. C. D.11.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現隨機等可能取出小球,當有放回依次取出兩個小球時,記取出的紅球數為;當無放回依次取出兩個小球時,記取出的紅球數為,則()A., B.,C., D.,12.函數在上的圖象大致為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設實數,若函數的最大值為,則實數的最大值為______.14.在三棱錐P-ABC中,,,,三個側面與底面所成的角均為,三棱錐的內切球的表面積為_________.15.已知,,且,則的最小值是______.16.記等差數列和的前項和分別為和,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若函數的圖象與軸有且只有一個公共點,求實數的取值范圍;(2)若對任意成立,求實數的取值范圍.18.(12分)某企業原有甲、乙兩條生產線,為了分析兩條生產線的效果,先從兩條生產線生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值.該項指標值落在內的產品視為合格品,否則為不合格品.乙生產線樣本的頻數分布表質量指標合計頻數2184814162100(1)根據甲生產線樣本的頻率分布直方圖,以從樣本中任意抽取一件產品且為合格品的頻率近似代替從甲生產線生產的產品中任意抽取一件產品且為合格品的概率,估計從甲生產線生產的產品中任取5件恰有2件為合格品的概率;(2)現在該企業為提高合格率欲只保留其中一條生產線,根據上述圖表所提供的數據,完成下面的列聯表,并判斷是否有90%把握認為該企業生產的這種產品的質量指標值與生產線有關?若有90%把握,請從合格率的角度分析保留哪條生產線較好?甲生產線乙生產線合計合格品不合格品合計附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87919.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.20.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.21.(12分)已知數列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數列的前項和為,且,若對,恒成立,求正整數的值.22.(10分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
直接利用全稱命題的否定是特稱命題寫出結果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.2、A【解析】
進行交集的運算即可.【詳解】,1,2,,,,1,.故選:.【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎題.3、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.4、D【解析】
根據所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數據分析素養為100分,乙的數據分析素養為80分,故甲的數據分析素養優于乙,故A正確;對于B,乙的數據分析素養為80分,數學建模素養為60分,故乙的數據分析素養優于數學建模素養,故B正確;對于C,甲的六大素養整體水平平均得分為,乙的六大素養整體水平均得分為,故C正確;對于D,甲的六大素養中數學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數據的特征、平均數的計算,考查了學生的數據處理能力,屬于基礎題.5、B【解析】
根據表格和折線統計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數不是一直保持上升趨勢,29屆最多,錯誤;B.折線統計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數、銅牌數有所下降,銀牌數有所上升,錯誤;D.統計圖中前六屆奧運會中國代表團的奧運獎牌總數按照順序排列的中位數為,不正確;故選:B【點睛】此題考查統計圖,關鍵點讀懂折線圖,屬于簡單題目.6、A【解析】
根據復數除法運算化簡,結合純虛數定義即可求得m的值.【詳解】由復數的除法運算化簡可得,因為是純虛數,所以,∴,故選:A.【點睛】本題考查了復數的概念和除法運算,屬于基礎題.7、A【解析】
設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.8、C【解析】
根據題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數原理計算可得答案.【詳解】解:根據題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應用,涉及分步計數原理的應用,屬于基礎題.9、D【解析】
根據命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.10、C【解析】
由,,利用平面向量的數量積運算,先求得利用平行四邊形的性質可得結果.【詳解】如圖所示,
平行四邊形中,,
,,,
因為,
所以
,
,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).11、B【解析】
分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區別.12、C【解析】
根據函數的奇偶性及函數在時的符號,即可求解.【詳解】由可知函數為奇函數.所以函數圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數的奇偶性的判定及奇偶函數圖像的對稱性,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.14、【解析】
先確定頂點在底面的射影,再求出三棱錐的高以及各側面三角形的高,利用各個面的面積和乘以內切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設頂點在底面上的射影為H,H是三角形ABC的內心,內切圓半徑.三個側面與底面所成的角均為,,,的高,,設內切球的半徑為R,∴,內切球表面積.故答案為:.【點睛】本題考查三棱錐內切球的表面積問題,考查學生空間想象能力,本題解題關鍵是找到內切球的半徑,是一道中檔題.15、1【解析】
先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因為,所以,所以,當且僅當,,時等號成立,故答案為:1.【點睛】本題主要考查基本不等式的應用,但是由于有3個變量,導致該題不易找到思路,屬于中檔題.16、【解析】
結合等差數列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求出及其導函數,利用研究的單調性和最值,根據零點存在定理和零點定義可得的范圍.(2)令,題意說明時,恒成立.同樣求出導函數,由研究的單調性,通過分類討論可得的單調性得出結論.【詳解】解(1)函數所以討論:①當時,無零點;②當時,,所以在上單調遞增.取,則又,所以,此時函數有且只有一個零點;③當時,令,解得(舍)或當時,,所以在上單調遞減;當時,所以在上單調遞增.據題意,得,所以(舍)或綜上,所求實數的取值范圍為.(2)令,根據題意知,當時,恒成立.又討論:①若,則當時,恒成立,所以在上是增函數.又函數在上單調遞增,在上單調遞增,所以存在使,不符合題意.②若,則當時,恒成立,所以在上是增函數,據①求解知,不符合題意.③若,則當時,恒有,故在上是減函數,于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實數的取值范圍是.【點睛】本題考查函數零點問題,考查不等式恒成立問題,考查用導數研究函數的單調性.解題關鍵是通過分類討論研究函數的單調性.本題難度較大,考查掌握轉化與化歸思想,考查學生分析問題解決問題的能力.18、(1)0.0081(2)見解析,保留乙生產線較好.【解析】
(1)先求出任取一件產品為合格品的頻率,“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,恰好發生2次的概率用二項分布概率即可解決.(2)獨立性檢驗算出的觀測值即可判斷.【詳解】(1)根據甲生產線樣本的頻率分布直方圖,樣本中任取一件產品為合格品的頻率為:.設“從甲生產線生產的產品中任取一件且為合格品”為事件,事件發生的概率為,則由樣本可估計.那么“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,事件恰好發生2次,其概率為:.(2)列聯表:甲生產線乙生產線合計合格品9096186不合格品10414合計100100200的觀測值,∵,,∴有90%把握認為該企業生產的這種產品的質量指標值與生產線有關.由(1)知甲生產線的合格率為0.9,乙生產線的合格率為,∵,∴保留乙生產線較好.【點睛】此題考查獨立重復性檢驗二項分布概率,獨立性檢驗等知識點,認準特征代入公式即可,屬于較易題目.19、(1);(2)【解析】
(1)直接利用轉換公式,把參數方程,直角坐標方程與極坐標方程進行轉化;(2)利用極坐標方程將轉化為三角函數求解即可.【詳解】(1)因為,所以的普通方程為,又,,,的極坐標方程為,的方程即為,對應極坐標方程為.(2)由己知設,,則,,所以,又,,當,即時,取得最小值;當,即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標方程,參數方程與極坐標方程的互化,三角函數的值域求解等知識,考查了學生的運算求解能力.20、(1)(2)3+3【解析】
(1)利用余弦的二倍角公式和同角三角函數關系式化簡整理并結合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 如何提高信息系統項目管理師考試中的回答準確性試題及答案
- 西方立法機關的功能與作用試題及答案
- 軟考網絡工程師學習資源分享試題及答案
- 公共政策危機溝通策略研究試題及答案
- 計算機三級軟件測試在政策中的應用試題及答案
- 機電工程的職業發展路徑試題及答案
- 網絡安全態勢感知技術試題及答案
- 網絡工程師全面準備試題及答案
- 前沿公共政策研究熱點試題及答案
- 軟件設計師考試心理調適方法與試題與答案
- 消防水管道改造應急預案
- 2021城鎮燃氣用二甲醚應用技術規程
- 【保安服務】服務承諾
- 07第七講 發展全過程人民民主
- 弱電智能化系統施工方案
- 對外派人員的員工幫助計劃以華為公司為例
- 2020-2021學年浙江省寧波市鎮海區七年級(下)期末數學試卷(附答案詳解)
- GB/T 9162-2001關節軸承推力關節軸承
- GB/T 34560.2-2017結構鋼第2部分:一般用途結構鋼交貨技術條件
- 閱讀繪本《小種子》PPT
- 醫院清潔消毒與滅菌課件
評論
0/150
提交評論