




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省張掖市高臺縣一中2023-2024學年數學高二上期末聯考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,若,,共面,則λ等于()A. B.3C. D.92.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條3.設,是橢圓C:的左、右焦點,若橢圓C上存在一點P,使得,則橢圓C的離心率e的取值范圍為()A. B.C. D.4.在等差數列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.455.將函數圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變,再將所得圖象向右平移個單位長度,得到函數的圖象,則()A. B.C. D.6.若函數在上有且僅有一個極值點,則實數的取值范圍為()A. B.C. D.7.過拋物線的焦點的直線交拋物線于兩點,點是原點,若;則的面積為()A. B.C. D.8.已知m,n表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.已知等差數列,,,則數列的前項和為()A. B.C. D.10.在空間直角坐標系下,點關于平面的對稱點的坐標為()A. B.C. D.11.直線l的方向向量為,且l過點,則點到l的距離為()A B.C. D.12.已知、分別為雙曲線的左、右焦點,且,點P為雙曲線右支一點,為的內心,若成立,給出下列結論:①點的橫坐標為定值a;②離心率;③;④當軸時,上述結論正確的是()A.①② B.②③C.①②③ D.②③④二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的兩焦點為,,P為C上的一點(P與,不共線),則的周長為______.14.已知數列滿足,則其通項公式_______15.已知直線(為常數)和圓,給出下列四個結論:①當變化時,直線恒過定點;②直線與圓可能無公共點;③若直線與圓有兩個不同交點,,則線段的長的最小值為;④對任意實數,圓上都不存在關于直線對稱的兩個點.其中正確的結論是______.(寫出所有正確結論的序號)16.寫出一個同時滿足下列條件①②③的圓C的標準方程:__________①圓C的圓心在第一象限;②圓C與x軸相切;③圓C與圓外切三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前項和為,滿足_______請在①;②,;③三個條件中任選一個,補充在上面的橫線上,完成上述問題.注:若選擇不同的條件分別解答,則按第一個解答計分(1)求數列的通項公式;(2)數列滿足,求數列的前項和18.(12分)在等差數列中.,(1)求的通項公式:(2)記的前項和為,求滿足的的最大值19.(12分)已知是公差不為0的等差數列,其前項和為,,且,,成等比數列.(1)求和;(2)若,數列的前項和為,且對任意的恒成立,求實數的取值范圍.20.(12分)如圖所示,、分別為橢圓的左、右焦點,A,B為兩個頂點,已知橢圓C上的點到、兩點的距離之和為4.(1)求a的值和橢圓C的方程;(2)過橢圓C的焦點作AB的平行線交橢圓于P,Q,求的面積21.(12分)已知拋物線的焦點到準線的距離為4,直線與拋物線交于兩點.(1)求此拋物線的方程;(2)若以為直徑的圓過原點O,求實數k的值.22.(10分)已知各項均為正數的等差數列滿足,且,,構成等比數列的前三項.(1)求數列,的通項公式;(2)設,求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由,,共面,設,列方程組能求出λ的值【詳解】∵,,共面,∴設(實數m、n),即,∴,解得故選:C2、C【解析】根據直線的斜率存在與不存在,分類討論,結合雙曲線的漸近線的性質,即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關系,以及雙曲線的漸近線的性質,其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應用,屬于基礎題.3、B【解析】先設,根據P在橢圓上得到,由,得到的范圍,即為離心率的范圍.【詳解】由橢圓的方程可得,,設,由,則,即,由P在橢圓上可得,所以,代入可得所以,因為,所以整理可得:,消去得:所以,即所以.故選:B4、B【解析】根據已知求出公差即可得出.【詳解】設等差數列的公差為,因為,,所以,則.故選:B.5、A【解析】根據三角函數圖象的變換,由逆向變換即可求解.【詳解】由已知的函數逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點的橫坐標縮短到原來的,縱坐標不變,得到的圖象,即的圖象.故.故選:A6、C【解析】根據極值點的意義,可知函數的導函數在上有且僅有一個零點.結合零點存在定理,即可求得的取值范圍.【詳解】函數則因為函數在上有且僅有一個極值點即在上有且僅有一個零點根據函數零點存在定理可知滿足即可代入可得解得故選:C【點睛】本題考查了函數極值點的意義,函數零點存在定理的應用,屬于中檔題.7、C【解析】拋物線焦點為,準線方程為,由得或所以,故答案為C考點:1、拋物線的定義;2、直線與拋物線的位置關系8、D【解析】根據空間直線與平面間的位置關系判斷【詳解】若,,也可以有,A錯;若,,也可以有,B錯;若,,則或,C錯;若,,則,這是線面垂直的判定定理之一,D正確故選:D9、A【解析】求出通項,利用裂項相消法求數列的前n項和.【詳解】因為等差數列,,,所以,所以,所以數列的前項和為故B,C,D錯誤.故選:A.10、C【解析】根據空間坐標系中點的對稱關系求解【詳解】點關于平面的對稱點的坐標為,故選:C11、C【解析】利用向量投影和勾股定理即可計算.【詳解】∵,∴又,∴在方向上的投影,∴P到l距離故選:C.12、C【解析】利用雙曲線的定義、幾何性質以及題意對選項逐個分析判斷即可【詳解】對于①,設內切圓與的切點分別為,則由切線長定理可得,因為,,所以,所以點的坐標為,所以點的橫坐標為定值a,所以①正確,對于②,因為,所以,化簡得,即,解得,因為,所以,所以②正確,對于③,設的內切圓半徑為,由雙曲線的定義可得,,因為,,所以,所以,所以③正確,對于④,當軸時,可得,此時,所以,所以④錯誤,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】結合橢圓的定義求得正確答案.【詳解】橢圓方程為,所以,所以三角形的周長為.故答案為:14、【解析】構造法可得,由等比數列的定義寫出的通項公式,進而可得.【詳解】令,則,又,∴,故,而,∴是公比為,首項為,則,∴.故答案為:.15、③④【解析】由可判斷①;根據直線過的定點在圓內可判斷②;當直線與過圓心的直徑垂直時,求出線段的長度可判斷③;把圓心代入直線的方程可判斷④.【詳解】對于①,,當變化時,直線恒過定點,故錯誤;對于②,因為,所以在圓的內部,所以直線與圓總有公共點,故錯誤;對于③,當直線與過圓心的直徑垂直時,線段的長度的最小,此時,故正確;對于④,把圓心代入直線,得對任意實數,圓上都不存在關于直線對稱的兩個點,故正確.故答案為:③④.16、(答案不唯一,但圓心坐標需滿足,)【解析】首先設圓的圓心和半徑,根據條件得到關于的方程組,即可求解.【詳解】設圓心坐標為,由①可知,半徑為,由②③可知,整理可得,當時,,,所以其中一個同時滿足條件①②③的圓的標準方程是.故答案為:(答案不唯一,但圓心坐標需滿足,)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析,;(2).【解析】(1)選①,可得出,由可求得數列的通項公式;選②,分析可知數列是公差為的等差數列,根據已知條件求出的值,利用等差數列的求和公式可求得數列的通項公式;選③,在等式中令可求得的值,即可得出數列的通項公式;(2)求得,利用裂項相消法可求得.【小問1詳解】解:選①,因為,則,則,當時,,也滿足,所以,對任意的,;選②,因為,則數列是公差為的等差數列,所以,,解得,則;選③,對任意的,,則,可得,因此,.【小問2詳解】解:因為,因此,.18、(1)(2)【解析】(1)根據等差數列的概念及通項公式可得基本量,進而可得解.(2)利用等差數列求和公式計算,解不等式即可.【小問1詳解】設等差數列的公差為,所以,解得,所以數列的通項公式為;【小問2詳解】由(1)得,所以,解得,所以的最大值為.19、(1),;(2).【解析】(1)求出,即得數列的和;(2)由題得,再利用分組求和求出,得到,令,判斷函數的單調性得解.【詳解】(1)設數列的公差為,由已知得,,即,整理得,又,,;(2)由題意:,,,令,則,即對任意的恒成立,是單調遞增數列,,只需,所以.【點睛】方法點睛:求數列的最值,常用數列的單調性求解,求數列的單調性,一般利用定義法作差或作商判斷.20、(1)a=2,(2)【解析】(1)由題意可得a=2,,求出,從而可求得橢圓方程,(2)由題意可求出的坐標,則可求出直線PQ的方程,然后將直線方程與橢圓方程聯立,消去,利用根與系數的關系,求出的值,從而可求出的值【小問1詳解】由橢圓定義可得2a=4,所以a=2,又因點在橢圓C上,所以,解得:,所以a的值為2,橢圓C的方程為【小問2詳解】由橢圓的方程可得,,,所以,所以直線PQ的方程為,設,,由可得,所以,,所以,所以21、(1)(2)【解析】(1)根據焦點到準線的距離,可得到,可得結果.(2)假設的坐標,得到,然后聯立直線與拋物線的方程,利用韋達定理,根據,可得結果.【詳解】(1)由題知:拋物線的焦點到準線的距離為,∴拋物線的方程為(2)設聯立,得,則,,,∵以為直徑圓過原點O,∴,∴,即,解得或(舍),∴【點睛】本題主要考查直線與拋物線的幾何關系的應用,屬基礎題.22、(1),,;(2).【解析】(1)由等差中項
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煉油廠智能化與大數據應用考核試卷
- 電氣機械系統的智能化旅游應用考核試卷
- 糖批發企業市場競爭力評估與提升考核試卷
- 8-1數模轉換電子課件
- 朋友和我初二語文作文
- 汽車配件售后服務提升考核試卷
- 稀土金屬加工中的設備投資與經濟效益分析案例考核試卷
- 疏散通道的安全標識與規范設置考核試卷
- 碳素材料在化學合成中的催化作用考核試卷
- 手腕康復器材考核試卷
- CJT 306-2009 建設事業非接觸式CPU卡芯片技術要求
- 臨床檢驗儀器與技術復習
- 燃氣設備維修保養合同范本
- 供貨方案及供貨計劃(2篇)
- SYT5405-2019酸化用緩蝕劑性能試驗方法及評價指標
- 內鏡下內痔套扎治療
- (正式版)JBT 14581-2024 閥門用彈簧蓄能密封圈
- (2024年)傳染病培訓課件
- 中職學校招生介紹課件
- 新能源業務開發培訓課件
- 初升高物理暑假銜接班課程
評論
0/150
提交評論