




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆云南省丘北縣第二中學數學高二上期末監測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與圓交于兩點,過分別作的垂線與軸交于兩點,則A.2 B.3C. D.42.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在3.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.4.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-135.下列結論正確的是()A.若,則 B.若,則C.若,則 D.若,則6.數學家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個頂點分別為,,,則的歐拉線方程是()A. B.C. D.7.若等比數列的前n項和,則r的值為()A. B.C. D.8.函數的定義域為,其導函數的圖像如圖所示,則函數極值點的個數為()A.2 B.3C.4 D.59.某救援隊有5名隊員,其中有1名隊長,1名副隊長,在一次救援中需隨機分成兩個行動小組,其中一組2名隊員,另一組3名隊員,則正、副隊長不在同一組的概率為()A. B.C. D.10.是直線與直線互相平行的()條件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要11.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>012.若橢圓與直線交于兩點,過原點與線段AB中點的直線的斜率為,則A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.設函數,若存在實數使得成立,則的取值范圍是__________.14.展開式的常數項是________15.已知等差數列的公差不為零,若,,成等比數列,則______.16.已知雙曲線的右焦點為,過點作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點.若,則雙曲線的離心率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前n項和為,且(1)證明數列是等比數列,并求出數列的通項公式;(2)在與之間插入n個數,使得包括與在內的這個數成等差數列,其公差為,求數列的前n項和18.(12分)已知拋物線y2=2px(p>0)的焦點為F,過F且與x軸垂直的直線交該拋物線于A,B兩點,|AB|=4(1)求拋物線的方程;(2)過點F的直線l交拋物線于P,Q兩點,若△OPQ的面積為4,求直線l的斜率(其中O為坐標原點)19.(12分)在四棱錐中,平面,,,,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求直線與平面所成角的正弦值.20.(12分)已知橢圓的左、右焦點分別為,且,直線過與交于兩點,的周長為8(1)求的方程;(2)過作直線交于兩點,且向量與方向相同,求四邊形面積的取值范圍21.(12分)已知O為坐標原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標準方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標;若不存在,請說明理由22.(10分)設等差數列的前n項和為,已知(1)求數列通項公式;(2)設,數列的前n項和為.定義為不超過x的最大整數,例如.當時,求n的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點,∴,故選D.2、A【解析】應用直線與圓的相離關系可得,再由余弦定理及三角形內角的性質即可判斷三角形的形狀.【詳解】由題設,,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.3、A【解析】利用空間向量的三角形法則可得,結合平行六面體的性質分析解答【詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A4、A【解析】根據兩圓有且僅有一條公切線,得到兩圓內切,從而可求出結果.【詳解】因為圓,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以兩圓內切,因此,即,解得.故選:A.5、C【解析】先舉例說明ABD不成立,再根據不等式性質說明C成立.【詳解】當時,滿足,但不成立,所以A錯;當時,滿足,但不成立,所以B錯;當時,滿足,但不成立,所以D錯;因為所以,又,因此同向不等式相加得,即C對;故選:C【點睛】本題考查不等式性質,考查基本分析判斷能力,屬基礎題.6、B【解析】根據的三個頂點坐標,先求解出重心的坐標,然后再根據三個點坐標求解任意兩條垂直平分線的方程,聯立方程,即可算出外心的坐標,最后根據重心和外心的坐標使用點斜式寫出直線方程.【詳解】由題意可得的重心為.因為,,所以線段的垂直平分線的方程為.因為,,所以直線的斜率,線段的中點坐標為,則線段的垂直平分線的方程為.聯立,解得,則的外心坐標為,故的歐拉線方程是,即故選:B.7、B【解析】利用成等比數列來求得.【詳解】依題意,等比數列的前n項和,,,所以.故選:B8、C【解析】根據給定的導函數的圖象,結合函數的極值的定義,即可求解.【詳解】如圖所示,設導函數的圖象與軸的交點分別為,根據函數的極值的定義可知在該點處的左右兩側的導數符號相反,可得為函數的極大值點,為函數的極小值點,所以函數極值點的個數為4個.故選:C.9、C【解析】求出基本事件總數與正、副隊長不在同一組的基本事件個數,即可求出答案.【詳解】基本事件總數為正、副隊長不在同一組的基本事件個數為故正、副隊長不在同一組的概率為.故選:C.10、B【解析】求出直線與平行的等價條件,再利用充分條件、必要條件的定義判斷作答.【詳解】由解得或,當時,與平行,當時,與平行,則直線與直線平行等價于或,所以是直線與直線互相平行的充分而不必要條件.故選:B11、B【解析】全稱命題的否定是特稱命題,把任意改為存在,把結論否定.【詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B12、D【解析】細查題意,把代入橢圓方程,得,整理得出,設出點的坐標,由根與系數的關系可以推出線段的中點坐標,再由過原點與線段的中點的直線的斜率為,進而可推導出的值.【詳解】聯立橢圓方程與直線方程,可得,整理得,設,則,從而線段的中點的橫坐標為,縱坐標,因為過原點與線段中點的直線的斜率為,所以,所以,故選D.【點睛】該題是一道關于直線與橢圓的綜合性題目,涉及到的知識點有直線與橢圓相交時對應的解題策略,中點坐標公式,斜率坐標公式,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將變形為,令,,分別研究其單調性及值域,使問題轉化為即可.【詳解】由題,,令,則,由,得,由,得,所以在遞減,在遞增,所以,令,則,由,得,由,得,所以在遞增,在遞減,所以,若存在實數使得成立,即存在實數使得成立,即存在實數使得恒成立所以,即,解得,所以取值范圍為.故答案為:【點睛】關鍵點點睛:本題解題關鍵是將所求問題轉為存在實數使得恒成立,結合的值域進一步轉化為存在實數使得恒成立,再只需即可.14、【解析】求出的通項公式,令的指數為0,即可求解.【詳解】的通項公式是,,依題意,令,所以的展開式中的常數項為.故答案為:.15、0【解析】設等差數列的公差為,,根據,,成等比數列,得到,再根據等差數列的通項公式可得結果.【詳解】設等差數列的公差為,,因為,,成等比數列,所以,所以,整理得,因為,所以,所以.故答案為:0.【點睛】本題考查了等比中項,考查了等差數列通項公式基本量運算,屬于基礎題.16、【解析】按題意求得,兩點坐標,以代數式表達出條件,即可得到關于的關系式,進而解得雙曲線的離心率.【詳解】雙曲線的右焦點為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解析】(1)根據公式得到,得到,再根據等比數列公式得到答案.(2)根據等差數列定義得到,再利用錯位相減法計算得到答案.【小問1詳解】,當時,,得到;當時,,兩式相減得到,整理得到,即,故,數列是首項為,公比為的等比數列,,即,驗證時滿足條件,故.【小問2詳解】,故,,,兩式相減得到:,整理得到:,故.18、(1);(2).【解析】(1)根據拋物線的定義以及拋物線通徑的性質可得,從而可得結果;(2)設直線的方程為,代入,得,利用弦長公式,結合韋達定理可得的值,由點到直線的距離公式,根據三角形面積公式可得,從而可得結果.【詳解】(1)由拋物線的定義得到準線的距離都是p,所以|AB|=2p=4,所以拋物線的方程為y2=4x(2)設直線l的方程為y=k(x-1),P(x1,y1),Q(x2,y2)因為直線l與拋物線有兩個交點,所以k≠0,得,代入y2=4x,得,且恒成立,則,y1y2=-4,所以又點O到直線l的距離,所以,解得,即【點睛】本題主要考查直線與拋物線的位置關系的相關問題,意在考查綜合利用所學知識解決問題能力和較強的運算求解能力,其常規思路是先把直線方程與圓錐曲線方程聯立,消元、化簡,然后應用根與系數的關系建立方程,解決相關問題19、(1)證明見解析;(2)證明見解析;(3).【解析】(1)根據給定條件證得即可推理作答.(2)由已知條件,以點A作原點建立空間直角坐標系,借助空間位置關系的向量證明即可作答.(3)利用(2)中信息,借助空間向量求直線與平面所成角的正弦值.【小問1詳解】在四棱錐中,因分別是的中點,則,因平面,平面,所以平面.【小問2詳解】在四棱錐中,平面,,以點A為原點,射線AB,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,而且,則,,設平面的法向量,由,令,得,又,因此有,所以平面.【小問3詳解】由(2)知,,令直線與平面所成角為,則有,所以直線與平面所成角的正弦值.20、(1);(2).【解析】(1)根據給定條件直接求出半焦距,及長半軸長即可作答.(2)根據給定條件結合橢圓的對稱性可得四邊形為平行四邊形,設出直線l的方程,與橢圓C的方程聯立,借助韋達定理、對勾函數性質計算作答.【小問1詳解】依題意,橢圓半焦距,由橢圓定義知,的周長,解得,,因此橢圓的方程為.【小問2詳解】依題意,直線的斜率不為0,設直線的方程為,,由消去并整理得:,則,,因與方向相同,即,又橢圓是以原點O為對稱中心的中心對稱圖形,于是得,即四邊形為平行四邊形,其面積,則,令,則,則,顯然在上單調遞增,則當時,,即,從而可得,所以四邊形面積的取值范圍為.【點睛】結論點睛:過定點的直線l:y=kx+b交圓錐曲線于點,,則面積;過定點直線l:x=ty+a交圓錐曲線于點,,則面積21、(1);(2)存在;.【解析】(1)根據給定條件求出a,c,b即可作答.(2)聯立直線l與橢圓C的方程,利用斜率坐標公式并結合韋達定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標準方程為:【小問2詳解】依題意,設直線l方程為,由消去x并整理得,設,,則,,假定存在點,直線TM與TN的斜率分別為,,,要使為定值,必有,即,當時,,,當時,,,所以存在點,使得直線TM與TN的斜率之積為定值【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 表彰大會活動報告
- 七年級語文下冊 第二單元 8 少年愛因斯坦教學設計 語文版
- 初中英語人教新目標 (Go for it) 版九年級全冊Section A第4課時教學設計
- 初中信息技術大連版八年級下冊第一單元 探秘動畫世界第十課 交互動畫之魂-按鈕元件的應用教學設計
- 初中體育華東師大版七年級全一冊邁向成熟的蛻變-青春期特點、常見問題和預防教案
- 碧桂園項目總培訓
- 九年級數學下冊 第二十九章 投影與視圖29.2 三視圖第2課時 由三視圖確定幾何體教學設計 (新版)新人教版
- 房地產精裝裝修培訓講師
- 抖音基礎教學培訓
- 七年級語文下冊 第三單元 10 阿長與《山海經》教學設計 新人教版
- 2023年廣東省東莞寮步鎮招聘30人文化管理員高頻考點題庫(共500題含答案解析)模擬練習試卷
- 高中心理健康教育-【17 創造最后一刻的奇跡】
- 初中語文人教七年級下冊驛路梨花寫作順序
- 班組LOGO,彰顯特色區隊文化
- 中國認證認可協會 (CCAA) 全國統一考試題庫及答案-合格評定基礎
- 國網網絡安全專業考試復習題庫大全-2(多選題匯總)
- 部編版小學語文 閱讀訓練 魯迅 (含答案)
- IEEE33節點三相配網參數
- 中石化華北分公司鉆井定額使用說明
- 高中英語3500詞匯完整
- 人教版六年級數學下冊期中試卷及答案
評論
0/150
提交評論