2023-2024學年陜西漢中市漢臺區縣高二數學第一學期期末考試模擬試題含解析_第1頁
2023-2024學年陜西漢中市漢臺區縣高二數學第一學期期末考試模擬試題含解析_第2頁
2023-2024學年陜西漢中市漢臺區縣高二數學第一學期期末考試模擬試題含解析_第3頁
2023-2024學年陜西漢中市漢臺區縣高二數學第一學期期末考試模擬試題含解析_第4頁
2023-2024學年陜西漢中市漢臺區縣高二數學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年陜西漢中市漢臺區縣高二數學第一學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是()A. B.C. D.2.球O為三棱錐的外接球,和都是邊長為的正三角形,平面PBC平面ABC,則球的表面積為()A. B.C. D.3.從1,2,3,4,5中隨機抽取三個數,則這三個數能成為一個三角形三邊長的概率為()A. B.C. D.4.在中,內角所對的邊為,若,,,則()A. B.C. D.5.已知雙曲線方程為,過點的直線與雙曲線只有一個公共點,則符合題意的直線的條數共有()A.4條 B.3條C.2條 D.1條6.已知雙曲線的實軸長為10,則該雙曲線的漸近線的斜率為()A. B.C. D.7.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A B.C. D.8.在平面直角坐標系中,橢圓的左、右焦點分別為,,過且垂直于軸的直線與交于,兩點,與軸交于點,,則的離心率為()A. B.C. D.9.已知函數,那么“”是“在上為增函數”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知點為直線上任意一點,為坐標原點.則以為直徑的圓除過定點外還過定點()A. B.C. D.11.在等差數列中,,且,,,構成等比數列,則公差()A.0或2 B.2C.0 D.0或12.已知數列是等差數列,為數列的前項和,,,則()A.54 B.71C.81 D.80二、填空題:本題共4小題,每小題5分,共20分。13.已知,若共線,m+n=__.14.點到直線的距離為_______.15.已知拋物線的焦點與的右焦點重合,則__________.16.達?芬奇認為:和音樂一樣,數學和幾何“包含了宇宙的一切”,從年輕時起,他就本能地把這些主題運用在作品中,布達佩斯的伊帕姆維澤蒂博物館收藏的達?芬奇方磚,在正六邊形上畫了具有視覺效果的正方體圖案(如圖1),把三片這樣的達?芬奇方磚形成圖2的組合,這個組合表達了圖3所示的幾何體.若圖3中每個正方體的邊長為1,則點到直線的距離是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值18.(12分)若等比數列的各項為正,前項和為,且,.(1)求數列的通項公式;(2)若是以1為首項,1為公差的等差數列,求數列的前項和.19.(12分)已知拋物線C:的焦點為F,為拋物線C上一點,且(1)求拋物線C的方程:(2)若以點為圓心,為半徑圓與C的準線交于A,B兩點,過A,B分別作準線的垂線交拋物線C于D,E兩點,若,證明直線DE過定點20.(12分)如圖,五邊形為東京奧運會公路自行車比賽賽道平面設計圖,根據比賽需要,在賽道設計時需預留出,兩條服務通道(不考慮寬度),,,,,為賽道.現已知,,千米,千米(1)求服務通道的長(2)在上述條件下,如何設計才能使折線賽道(即)的長度最大,并求最大值21.(12分)如圖,多面體中,平面平面,,四邊形為平行四邊形.(1)證明:;(2)若,求二面角的余弦值.22.(10分)在水平桌面上放一只內壁光滑的玻璃水杯,已知水杯內壁為拋物面型(拋物面指拋物線繞其對稱軸旋轉所得到的面),拋物面的軸截面是如圖所示的拋物線.現有一些長短不一、質地均勻的細直金屬棒,其長度均不小于拋物線通徑的長度(通徑是過拋物線焦點,且與拋物線的對稱軸垂直的直線被拋物線截得的弦),若將這些細直金屬棒,隨意丟入該水杯中,實驗發現:當細棒重心最低時,達到靜止狀態,此時細棒交匯于一點.(1)請結合你學過的數學知識,猜想細棒交匯點的位置;(2)以玻璃水杯內壁軸截面的拋物線頂點為原點,建立如圖所示直角坐標系.設玻璃水杯內壁軸截面的拋物線方程為,將細直金屬棒視為拋物線的弦,且弦長度為,以細直金屬棒的中點為其重心,請從數學角度解釋上述實驗現象.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意得當時,,根據題意作出函數的部分圖象,再結合圖象即可求出答案【詳解】解:當時,,又,∴當時,,∴在上單調遞增,在上單調遞減,且;又,則函數圖象每往右平移兩個單位,縱坐標變為原來的倍,作出其大致圖象得,當時,由得,或,由圖可知,若對任意,都有,則,故選:D【點睛】本題主要考查函數的圖象變換,考查數形結合思想,屬于中檔題2、B【解析】取中點為T,以及的外心為,的外心為,依據平面平面可知為正方形,然后計算外接球半徑,最后根據球表面積公式計算.【詳解】設中點為T,的外心為,的外心為,如圖由和均為邊長為的正三角形則和的外接圓半徑為,又因為平面PBC平面ABC,所以平面,可知且,過分別作平面、平面的垂線相交于點即為三棱錐的外接球的球心,且四邊形是邊長為的正方形,所以外接球半徑,則球的表面積為,故選:B3、C【解析】列舉出所有情況,然后根據兩邊之和大于第三邊數出能構成三角形的情況,進而得到答案.【詳解】5個數取3個數的所有情況如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10種情況,而能構成三角形的情況有{2,3,4;2,4,5;3,4,5}共3種情況,故所求概率.故選:C.4、B【解析】利用正弦定理角化邊得到,再利用余弦定理構造方程求得結果.【詳解】,,由余弦定理得:,,.故選:B.5、A【解析】利用雙曲線漸近線的性質,結合一元二次方程根的判別式進行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點為.①直線與雙曲線只有一個公共點;②過點平行于漸近線時,直線與雙曲線只有一個公共點;③設過的切線方程為與雙曲線聯立,可得,由,即,解得,直線的條數為1.綜上可得,直線的條數為4.故選:A,.6、B【解析】利用雙曲線的實軸長為,求出,即可求出該雙曲線的漸近線的斜率.【詳解】由題意,,所以,,所以雙曲線的漸近線的斜率為.故選:B.【點睛】本題考查雙曲線的方程與性質,考查學生的計算能力,屬于基礎題.7、A【解析】設直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設過點的直線.由直線與圓、圓均相切,得解得(1).設點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結合(1)(2)兩式,解得8、B【解析】由題意結合幾何性質可得為等腰三角形,且,所以,求出的長,結合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點,則為的中點,又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B9、A【解析】對函數進行求導得,進而得時,,在上為增函數,然后判斷充分性和必要性即可.【詳解】解:因為的定義域是,所以,當時,,在上為增函數.所以在上為增函數,是充分條件;反之,在上為增函數或,不是必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,屬于中檔題.10、D【解析】設垂直于直線,可知圓恒過垂足;兩條直線方程聯立可求得點坐標.【詳解】設垂直于直線,垂足為,則直線方程為:,由圓的性質可知:以為直徑的圓恒過點,由得:,以為直徑的圓恒過定點.故選:D.11、A【解析】根據等比中項的性質和等差數列的通項公式建立方程,可解得公差d得選項.【詳解】解:因為在等差數列中,,且,,,構成等比數列,所以,即,所以,解得或,故選:A.12、C【解析】利用等差數列的前n項和公式求解.【詳解】∵是等差數列,,∴,得,∴.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據空間向量平行的坐標運算求出m,n,進而求得答案.【詳解】由于,因為,所以存在,使得,于是,則.故答案為:.14、【解析】應用點線距離公式求點線距離.【詳解】由題設,點到距離為.故答案為:15、【解析】求出拋物線的焦點坐標即為的右焦點可得答案.【詳解】由題意可知:拋物線的焦點坐標為,由題意知表示焦點在軸的橢圓,在橢圓中:,所以,因為,所以.故答案為:.16、【解析】根據題意,求得△的三條邊長,在三角形中求邊邊上的高線即可.【詳解】根據題意,延長交于點,連接,如下所示:在△中,容易知:;同理,,滿足,設點到直線的距離為,由等面積法可知:,解得,即點到直線的距離是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)推導出,取BC的中點F,連結EF,可推出,從而平面,進而,由此得到平面,從而;(2)以為坐標原點,,所在直線分別為,軸,以過點且與平行的直線為軸,建立空間直角坐標系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點F,連結EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標原點,所在直線分別為軸,建立空間直角坐標系(如圖),則∴設平面的法向量為,則,即得平面一個法向量為由(1)知平面,所以可設平面的法向量為設平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點睛】用空間向量求解立體幾何問題的注意點(1)建立坐標系時要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準確求得所需點的坐標(2)用平面的法向量求二面角的大小時,要注意向量的夾角與二面角大小間的關系,這點需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結論18、(1)(2)【解析】(1)設公比為,則由已知可得,求出公比,再求出首項,從而可求出數列的通項公式;(2)由已知可得,而,所以,然后利用錯位相減法可求得結果【小問1詳解】設各項為正的等比數列的公比為,,,則,,,即,解得或(舍去),所以,所以數列的通項公式為.【小問2詳解】因為是以1為首項,1為公差的等差數列,所以.由(1)知,所以.所以①在①的等式兩邊同乘以,得②由①②等式兩邊相減,得,所以數列的前項和.19、(1);(2)證明見解析.【解析】(1)解方程和即得解;(2)設,,將與圓P方程聯立得到韋達定理,再寫出直線的方程即得解.【小問1詳解】解:因為為拋物線C上一點,且,所以到拋物線C的準線的距離為2則,,則,所以,故拋物線C的方程為【小問2詳解】證明:由(1)知,則圓P的方程為設,,將與圓P的方程聯立,可得,則,當時,,不妨令,則,此時;當時,直線DE的斜率為,則直線DE的方程為,即,即,令且,得,直線過點;綜上,直線DE過定點20、(1)服務通道的長為千米(2)時,折線賽道的長度最大,最大值為千米【解析】(1)先在中利用正弦定理得到長度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負值舍去)所以服務通道的長為千米【小問2詳解】在中,由余弦定理得:,即,所以因為,所以,所以,即(當且僅當時取等號)即當時,折線賽道的長度最大,最大值為千米21、(1)證明見解析(2)【解析】(1)先通過平面平面得到,再結合,可得平面,進而可得結論;(2)取的中點,的中點,連接,,以點為坐標原點,分別以,,為軸,軸,軸建立空間直角坐標系,求出平面的一個法向量以及平面的一個法向量,求這兩個法向量的夾角即可得結果.【詳解】解:(1)因為平面平面,交線為,又,所以平面,,又,,則平面,平面,所以,;(2)取的中點,的中點,連接,,則平面,平面;以點坐標原點,分別以,,為軸,軸,軸建立空間直角坐標系如圖所示,已知,則,,,,,,則,,設平面的一個法向量,由得令,則,,即;平面的一個法向量為;.所以二面角的余弦值為.【點睛】本題考查線線垂直的證明以及空間向量發求面面角,考查學生計算能力以及空間想象能力,是中檔題.22、(1)拋物線的焦點或拋物面的焦點(2)答案見解析【解析】(1)結合通徑的特點可猜想得到結果;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論