2022-2023學年江蘇省蘇州市工業園區星灣學校七年級(上)段考數學試卷(12月份)(含解析)_第1頁
2022-2023學年江蘇省蘇州市工業園區星灣學校七年級(上)段考數學試卷(12月份)(含解析)_第2頁
2022-2023學年江蘇省蘇州市工業園區星灣學校七年級(上)段考數學試卷(12月份)(含解析)_第3頁
2022-2023學年江蘇省蘇州市工業園區星灣學校七年級(上)段考數學試卷(12月份)(含解析)_第4頁
2022-2023學年江蘇省蘇州市工業園區星灣學校七年級(上)段考數學試卷(12月份)(含解析)_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年江蘇省蘇州市工業園區星灣學校七年級第一學期段考數學試卷(12月份)一、選擇題(本大題共有10小題,每小題2分,共20分)1.﹣5的相反數是()A.﹣5 B.5 C. D.﹣2.下列計算正確的是()A.4a﹣2a=2 B.2x2+2x2=4x4 C.﹣2x2y﹣3yx2=﹣5x2y D.2a2b﹣3a2b=a2b3.下列說法正確的是()A.﹣2不是單項式 B.單項式的系數是2,次數是3 C.x+1是整式 D.多項式3x2+4x2﹣5的常數項是54.雨滴滴下來形成雨絲屬于下列哪個選項的實際應用()A.點動成線 B.線動成面 C.面動成體 D.以上都不對5.若關于x的一元一次方程2x﹣k+1=0的解是x=2,那么k的值是()A.3 B.4 C.5 D.66.下面是兩位同學在討論一個一元一次不等式.不等式在求解的過程中需要改變不等號的方向.不等式的解集為x≤5.根據上面對話提供的信息,他們討論的不等式可以是()A.﹣2x≥﹣10 B.2x≤10 C.﹣2x≥10 D.﹣2x≤﹣107.如圖,已知一個正方體的三個面上分別標有字母a,b,m,則它的表面展開圖可能是()A. B. C. D.8.對于代數式﹣1+m的值,下列說法正確的是()A.比﹣1大 B.比﹣1小 C.比m大 D.比m小9.某超市在“元旦”活動期間,推出如下購物優惠方案:①一次性購物在100元(不含100元)以內,不享受優惠;②一次性購物在100元(含100元)以上,350元(不含350元)以內,一律享受九折優惠;③一次性購物在350元(含350元)以上,一律享受八折優惠;小敏在該超市兩次購物分別付了90元和270元,如果小敏把這兩次購物改為一次性購物,則小敏至少需付款()元A.288 B.296 C.312 D.32010.如圖為手的示意圖,在各個手指間標記字母A、B、C、D.請你按圖中箭頭所指方向(即A?B?C?D?C?B?A?B?C?…的方式)從A開始數連續的正整數1,2,3,4…,當字母C第2022次出現時,恰好數到的數是()A.6072 B.6065 C.6071 D.6066二、填空題(本大題共有8小題,每小題3分,共16分)11.已知某公司去年的營業額約為407000元,則此營業額用科學記數法可表示為元.12.已知(a﹣3)x|a|﹣2﹣5=8是關于x的一元一次方程,則a的值為.13.某正方體的每個面上都有一個漢字,如圖是它的一個展開圖,則在原正方體中,與“我”字所在面相對的面上的漢字是.14.已知a2﹣2a+1=0,則代數式4﹣2a2+4a的值為.15.若關于x的方程(1﹣m)x=1﹣2x的解集是一個負數,則m的取值范圍是.16.小穎將幾盒粉筆整齊地摞在講臺桌上,同學們發現從正面,左面,上面三個方向看到的粉筆形狀相同(如圖所示),那么這摞粉筆一共有盒.17.如圖,一個圓柱的側面展開圖為如圖所示的矩形,則其底面圓的面積為.18.實驗室里,水平桌面上有甲、乙、丙三個相同高度的圓柱形容器(容器足夠高),底面半徑之比為1:2:1,用兩個相同的管子在10cm高度處連通(即管子底部離容器底10cm),現三個容器中,只有乙中有水,水位高4cm,如圖所示.若每分鐘同時向甲和丙注入相同量的水,開始注水1分鐘,甲的水位上升3cm.則開始注入分鐘水量后,甲的水位比乙高2cm.三、解答題(本大題共有9小題,共64分)19.計算:(1)﹣22+|﹣9|﹣(﹣4)2×(﹣)3;(2)()×(﹣24)20.解方程(1)4x﹣x=2(x﹣1)+5;(2).21.解不等式﹣1,并把解集在數軸上表示出來.22.先化簡,再求值:3(2a2b﹣ab2)﹣3(ab2﹣2a2b),其中.23.圖1是由7個相同的小正方體組成的幾何體.(1)請在網格中畫出該幾何體的主視圖、左視圖和俯視圖;(2)已知每個小正方體的棱長為1cm,則該幾何體的表面積為cm2.24.下框中是小明對一道應用題的解答.題目:某班同學分組參加活動,原來每組8人,后來重新編組,每組6人,這樣比原來增加了2組.這個班共有多少名學生?解:設這個班共有x名學生.根據題意,得8x=6(x+2).解這個方程,得x=6.答:這個班共有6名學生.請指出小明解答中的錯誤,并寫出本題正確的解答.25.學校近期舉辦了一年一度的經典誦讀比賽.某班級因節目需要,須購買A、B兩種道具.已知購買1件A道具比購買1件B道具多10元,購買2件A道具和3件B道具共需要45元.(1)購買一件A道具和一件B道具各需要多少元?(2)根據班級情況,需要這兩種道具共60件,且購買兩種道具的總費用不超過620元.①請問道具A最多購買多少件?②若其中A道具購買的件數不少于B道具購買件數,該班級共有幾種方案?試寫出所有方案,并求出最少費用為多少元?26.定義:關于x的方程ax﹣b=0與方程bx﹣a=0(a、b均為不等于0的常數)稱互為“反對方程”,例如:方程2x﹣1=0與方程x﹣2=0互為“反對方程”.(1)若關于x的方程2x﹣3=0與方程3x﹣c=0互為“反對方程”,則c=;(2)若關于x的方程4x+3m+1=0與方程5x﹣n+2=0互為“反對方程”,求m、n的值;(3)若關于x的方程2x﹣b=0與其“反對方程”的解都是整數,求整數b的值.27.把正整數1,2,3,4,…,排列成如圖1所示的一個表,從上到下分別稱為第1行、第2行……從左到右分別稱為第1列、第2列……用如圖2所示的方框在圖1中框住16個數,把其中沒有被陰影覆蓋的四個數分別記為A,B,C,D.設A=x.(1)在圖1中,數2021排在第幾行第幾列?(2)A﹣B+C﹣D的值是否為定值?如果是,請求出它的值;如果不是,請說明理由.(3)將圖1中的奇數都改為原數的相反數,偶數不變.此時A+B﹣C﹣D的值能否為3918?如果能,請求出A所表示的數;如果不能,請說明理由.

參考答案一、選擇題(本大題共有10小題,每小題2分,共20分)1.﹣5的相反數是()A.﹣5 B.5 C. D.﹣【分析】根據相反數的定義直接求得結果.解:﹣5的相反數是5.故選:B.【點評】本題主要考查了相反數的性質,只有符號不同的兩個數互為相反數,0的相反數是0.2.下列計算正確的是()A.4a﹣2a=2 B.2x2+2x2=4x4 C.﹣2x2y﹣3yx2=﹣5x2y D.2a2b﹣3a2b=a2b【分析】根據合并同類項法則逐一計算可得.解:A、4a﹣2a=2a,此選項錯誤;B、2x2+2x2=4x2,此選項錯誤;C、﹣2x2y﹣3yx2=﹣5x2y,此選項正確;D、2a2b﹣3a2b=﹣a2b,此選項錯誤;故選:C.【點評】本題主要考查合并同類項,解題的關鍵是掌握合并同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變.3.下列說法正確的是()A.﹣2不是單項式 B.單項式的系數是2,次數是3 C.x+1是整式 D.多項式3x2+4x2﹣5的常數項是5【分析】根據單項式的定義即可判斷選項A;根據單項式的系數和次數的定義即可判斷選項B;根據整式的定義即可判斷選項C;根據多項式項的定義即可判斷選項D.解:A.﹣2是單項式,故本選項不符合題意;B.﹣的系數是﹣,次數是3,故本選項不符合題意;C.x+1是整式,故本選項符合題意;D.多項式3x2+4x2﹣5的常數項是﹣5,故本選項不符合題意;故選:C.【點評】本題考查了單項式的有關概念,整式和多項式的項的定義等知識點,能理解單項式的系數、次數的定義是解此題的關鍵.4.雨滴滴下來形成雨絲屬于下列哪個選項的實際應用()A.點動成線 B.線動成面 C.面動成體 D.以上都不對【分析】根據點動成線分析即可.解:雨滴滴下來形成雨絲屬于點動成線,故選:A.【點評】此題考查點、線、面、體,關鍵是根據點動成線解答.5.若關于x的一元一次方程2x﹣k+1=0的解是x=2,那么k的值是()A.3 B.4 C.5 D.6【分析】把x=2代入方程計算即可求出k的值.解:把x=2代入方程得:4﹣k+1=0,解得:k=5.故選:C.【點評】此題考查了一元一次方程的解,方程的解即為能使方程左右兩邊相等的未知數的值.6.下面是兩位同學在討論一個一元一次不等式.不等式在求解的過程中需要改變不等號的方向.不等式的解集為x≤5.根據上面對話提供的信息,他們討論的不等式可以是()A.﹣2x≥﹣10 B.2x≤10 C.﹣2x≥10 D.﹣2x≤﹣10【分析】找到未知數系數為負數,并且不等式的解為x≤5的即為所求.解:A、﹣2x≥﹣10,解得x≤5,符合題意;B、2x≤10,未知數系數為正數,不符合題意;C、﹣2x≥10,解得x≤﹣5,不符合題意;D、﹣2x≤﹣10,解得x≥5,不符合題意.故選:A.【點評】本題考查了解一元一次不等式,根據不等式的性質解一元一次不等式,基本操作方法與解一元一次方程基本相同,都有如下步驟:①去分母;②去括號;③移項;④合并同類項;⑤化系數為1.以上步驟中,只有①去分母和⑤化系數為1可能用到性質3,即可能變不等號方向,其他都不會改變不等號方向.7.如圖,已知一個正方體的三個面上分別標有字母a,b,m,則它的表面展開圖可能是()A. B. C. D.【分析】根據已知可得:標有字母a,b,m的三個面是相鄰面,然后根據正方體的表面展開圖找相對面的方法:一線隔一個,逐一判斷即可解答.解:根據已知可得:標有字母a,b,m的三個面是相鄰面,A、標有字母a,b,m的三個面是相鄰面,故A符合題意;B、標有字母a與m的兩個面是相對面,故B不符合題意;C、標有字母b與m的兩個面是相對面,故C不符合題意;D、標有字母a與m的兩個面是相對面,故D不符合題意;故選:A.【點評】本題考查了正方體相對兩個面上的文字,熟練掌握正方體的相對面與相鄰面是解題的關鍵.8.對于代數式﹣1+m的值,下列說法正確的是()A.比﹣1大 B.比﹣1小 C.比m大 D.比m小【分析】根據題意比較﹣1+m與﹣1的大小和﹣1+m與m的大小,應用差值法,當a﹣b>0,則a>b,當a﹣b<0,則a<b,逐項進行判定即可得出答案.解:根據題意可知,﹣1+m﹣(﹣1)=m,當m>0時,﹣1+m的值比﹣1大,當m<0時,﹣1+m的值比﹣1小,因為m的不確定,所以A選項不符合題意;B選項也不符合題意;﹣1+m﹣m=﹣1,因為﹣1<0,所以﹣1+m<m,所以C選項不符合題意,D選項符合題意.故選:D.【點評】本題主要考查了代數式求值,熟練應用相關知識進行求解是解決本題的關鍵.9.某超市在“元旦”活動期間,推出如下購物優惠方案:①一次性購物在100元(不含100元)以內,不享受優惠;②一次性購物在100元(含100元)以上,350元(不含350元)以內,一律享受九折優惠;③一次性購物在350元(含350元)以上,一律享受八折優惠;小敏在該超市兩次購物分別付了90元和270元,如果小敏把這兩次購物改為一次性購物,則小敏至少需付款()元A.288 B.296 C.312 D.320【分析】設第一次購物購買商品的價格為x元,第二次購物購買商品的價格為y元,分0<x<100及100≤x<350兩種情況可得出關于x的一元一次方程,解之可求出x的值,由第二次購物付款金額=0.9×第二次購物購買商品的價格可得出關于y的一元一次方程,解之可求出y值,再利用兩次購物合并為一次購物需付款金額=0.8×兩次購物購買商品的價格之和,即可求出結論.解:設第一次購物購買商品的價格為x元,第二次購物購買商品的價格為y元,當0<x<100時,x=90;當100≤x<350時,0.9x=90,解得:x=100;∵0.9y=270,∴y=300.∴0.8(x+y)=312或320.所以至少需要付312元.故選:C.【點評】此題主要考查了一元一次方程的應用,解題關鍵是第一次購物的90元可能有兩種情況,需要討論清楚.本題要注意不同情況的不同算法,要考慮到各種情況,不要丟掉任何一種.10.如圖為手的示意圖,在各個手指間標記字母A、B、C、D.請你按圖中箭頭所指方向(即A?B?C?D?C?B?A?B?C?…的方式)從A開始數連續的正整數1,2,3,4…,當字母C第2022次出現時,恰好數到的數是()A.6072 B.6065 C.6071 D.6066【分析】分別求出正整數1,2,3,4…所對應的字母,根據發現的規律即可解決問題.解:根據題意,列出相應的表格,如下圖,觀察表格可知,字母C所對應數是3,5,9,11,15,17,21…所以字母C第1次出現,數到的數是3=1×6+(﹣3);字母C第3次出現,數到的數是9=2×6+(﹣3);字母C第5次出現,數到的數是15=3×6+(﹣3);…所以字母C第2021次出現,數到的數是,因此字母C第2022次出現,數到的數是6063+2=6065.故選:B.【點評】本題考查數的排列規律,能根據數的方式發現字母和所數的數之間的關系是解題的關鍵.二、填空題(本大題共有8小題,每小題3分,共16分)11.已知某公司去年的營業額約為407000元,則此營業額用科學記數法可表示為4.07×105元.【分析】科學記數法的表現形式為a×10n的形式,其中1≤|a|<10,n為整數,確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同,當原數絕對值大于等于10時,n是正整數,當原數絕對值小于1時,n是負整數;由此進行求解即可得到答案.解:407000=4.07×105.故答案為:4.07×105.【點評】本題主要考查了科學記數法,解題的關鍵在于能夠熟練掌握科學記數法的定義.12.已知(a﹣3)x|a|﹣2﹣5=8是關于x的一元一次方程,則a的值為﹣3.【分析】根據一元一次方程的定義,得到|a﹣2|=1和a﹣3≠0,解之即可得到答案.解:根據題意得:|a|﹣2=1,解得a=3或a=﹣3,因為a﹣3≠0,所以a≠3,綜上可知:a=﹣3.故答案為:﹣3.【點評】本題考查了一元一次方程的定義和絕對值,正確掌握一元一次方程的定義和絕對值的定義是解題的關鍵.13.某正方體的每個面上都有一個漢字,如圖是它的一個展開圖,則在原正方體中,與“我”字所在面相對的面上的漢字是課.【分析】正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點作答.解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,“我”與“課”是相對面.故答案為:課.【點評】本題主要考查了正方體相對兩個面上的文字,注意正方體的空間圖形,從相對面入手.14.已知a2﹣2a+1=0,則代數式4﹣2a2+4a的值為6.【分析】利用整體思想代入即可求解.解:∵a2﹣2a+1=0,∴a2﹣2a=﹣1,∴4﹣2a2+4a=4﹣2(a2﹣2a)=4﹣2×(﹣1)=6,故答案為:6.【點評】本題考查代數式的求值,解題的關鍵是利用整體思想代入求解.15.若關于x的方程(1﹣m)x=1﹣2x的解集是一個負數,則m的取值范圍是m>3.【分析】本題首先要解這個關于x的方程,求出方程的解,根據解是負數,可以得到一個關于a的不等式,就可以求出a的范圍.解:由(1﹣m)x=1﹣2x得:x=又∵x<0∴<0∵m≠3∴m>3【點評】本題是一個方程與不等式的綜合題目.解關于x的不等式是本題的一個難點.16.小穎將幾盒粉筆整齊地摞在講臺桌上,同學們發現從正面,左面,上面三個方向看到的粉筆形狀相同(如圖所示),那么這摞粉筆一共有4盒.【分析】首先根據俯視圖判斷最底層的個數,然后結合主視圖和左視圖判斷出該總盒數.解:由俯視圖可得最底層有3盒,由正視圖和左視圖可得第二層有1盒,共有4盒,故答案為:4.【點評】考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.17.如圖,一個圓柱的側面展開圖為如圖所示的矩形,則其底面圓的面積為4π或π.【分析】分底面周長為4π和2π兩種情況討論,先求得底面半徑,再根據圓的面積公式即可求解.解:①底面周長為4π時,半徑為4π÷π÷2=2,底面圓的面積為π×22=4π;②底面周長為2π時,半徑為2π÷π÷2=1,底面圓的面積為π×12=π.故其底面圓的面積為4π或π.故答案為:4π或π.【點評】考查了圓柱的側面展開圖,關鍵是得到圓柱的底面圓的半徑,注意分長為底面周長和寬為底面周長兩種情況討論求解.18.實驗室里,水平桌面上有甲、乙、丙三個相同高度的圓柱形容器(容器足夠高),底面半徑之比為1:2:1,用兩個相同的管子在10cm高度處連通(即管子底部離容器底10cm),現三個容器中,只有乙中有水,水位高4cm,如圖所示.若每分鐘同時向甲和丙注入相同量的水,開始注水1分鐘,甲的水位上升3cm.則開始注入2或6分鐘水量后,甲的水位比乙高2cm.【分析】開設始注入x分鐘的水量后,甲的水位比乙高2cm,有兩種情況:①甲的水位達到4+2=6cm,乙不變時;②甲、丙的水位到達管子底部10厘米,乙的水位上升到10﹣2=8cm時;分別列方程求解即可.解:甲、乙、丙三個相同高度的圓柱形容器(容器足夠高),底面半徑之比為1:2:1,注水1分鐘,甲的水位上升3cm,丙的水位上升3cm,乙的水位上升cm,設開始注入x分鐘的水量后,甲的水位比乙高2cm,①甲的水位達到4+2=6(cm),乙不變時,由題意得3x=6,解得:x=2;②甲、丙的水位到達管子底部10厘米,乙的水位上升到10﹣2=8(cm)時;(x﹣)×2=8﹣4,解得:x=6.答:開始注入2或6分鐘水量后,甲的水位比乙高2cm.故答案為:2或6.【點評】此題考查一元一次方程的實際運用,利用圓柱體積計算公式,利用底面半徑之間的關系得出高之間的關系是解決問題的關鍵.三、解答題(本大題共有9小題,共64分)19.計算:(1)﹣22+|﹣9|﹣(﹣4)2×(﹣)3;(2)()×(﹣24)【分析】(1)先算乘方和去絕對值,再算乘法,最后算加減法即可;(2)根據乘法分配律計算即可.解:(1)﹣22+|﹣9|﹣(﹣4)2×(﹣)3=﹣4+9﹣16×(﹣)=﹣4+9+2=7;(2)()×(﹣24)=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣14+16+(﹣30)=﹣28.【點評】本題考查有理數的混合運算,熟練掌握運算法則是解答本題的關鍵.20.解方程(1)4x﹣x=2(x﹣1)+5;(2).【分析】(1)按去括號、移項、合并同類項、系數化為1的順序進行求解;(2)按去分母、去括號、移項、合并同類項、系數化為1的順序進行求解;解:(1)4x﹣x=2(x﹣1)+5,去括號,得4x﹣x=2x﹣2+5,移項,得4x﹣x﹣2x=﹣2+5,合并同類項,得x=3;(2),去分母,得6x+2(1﹣x)=x+2﹣6,去括號,得6x+2﹣2x=x+2﹣6,移項,得6x﹣2x﹣x=2﹣6﹣2,合并同類項,得3x=﹣6,系數化為1,得x=﹣2.【點評】此題考查了一元一次方程的求解能力,關鍵是能確定正確的運算順序,并能進行正確的計算.21.解不等式﹣1,并把解集在數軸上表示出來.【分析】根據解一元一次不等式的方法可以求得該不等式的解集,然后在數軸上表示出其解集即可.解:﹣1,去分母,得:4(x﹣3)≤(5x﹣4)﹣6,去括號,得:4x﹣12≤5x﹣4﹣6,移項及合并同類項,得:﹣x≤2,系數化為1,得:x≥﹣2,其解集在數軸上表示如下所示:.【點評】本題考查解一元一次不等式、在數軸上表示不等式的解集,解答本題的關鍵是明確解一元一次不等式的方法.22.先化簡,再求值:3(2a2b﹣ab2)﹣3(ab2﹣2a2b),其中.【分析】先根據去括號法則和合并同類項法則將整式化簡,再根據非負性求出a、b,然后將a,b代入化簡后的整式求值即可.解:原式=6a2b﹣3ab2﹣3ab2+6a2b=12a2b﹣6ab2.∵,∴,b+3=0,∴a=,b=﹣3.當a=,b=﹣3時,原式===﹣9﹣27=﹣36.【點評】本題考查整式的化簡求值和平方與絕對值的非負性,解題關鍵是根據去括號法則和合并同類項法則將整式正確化簡.23.圖1是由7個相同的小正方體組成的幾何體.(1)請在網格中畫出該幾何體的主視圖、左視圖和俯視圖;(2)已知每個小正方體的棱長為1cm,則該幾何體的表面積為28cm2.【分析】(1)根據三視圖的定義畫出圖形即可.(2)根據表面積的定義求解即可.解:(1)如圖所示:(2)這個組合幾何體的表面積為(6×2+4×4)×1=28(cm)2,故答案為:28.【點評】本題考查作圖﹣三視圖,幾何體的表面積等知識,解題的關鍵是理解三視圖的定義,屬于中考常考題型.24.下框中是小明對一道應用題的解答.題目:某班同學分組參加活動,原來每組8人,后來重新編組,每組6人,這樣比原來增加了2組.這個班共有多少名學生?解:設這個班共有x名學生.根據題意,得8x=6(x+2).解這個方程,得x=6.答:這個班共有6名學生.請指出小明解答中的錯誤,并寫出本題正確的解答.【分析】小明的方程列錯,寫出正確的解答過程即可.解:小明方程列錯,正確解答為:設這個班共有x名學生,根據題意,得=﹣2,去分母得:3x=4x﹣48,解這個方程,得x=48,答:這個班共有48名學生.【點評】此題考查了解一元一次方程,以及代數式求值,列出正確的方程是解本題的關鍵.25.學校近期舉辦了一年一度的經典誦讀比賽.某班級因節目需要,須購買A、B兩種道具.已知購買1件A道具比購買1件B道具多10元,購買2件A道具和3件B道具共需要45元.(1)購買一件A道具和一件B道具各需要多少元?(2)根據班級情況,需要這兩種道具共60件,且購買兩種道具的總費用不超過620元.①請問道具A最多購買多少件?②若其中A道具購買的件數不少于B道具購買件數,該班級共有幾種方案?試寫出所有方案,并求出最少費用為多少元?【分析】(1)設購買一件A道具需要x元,購買一件B道具需要y元,根據“購買1件A道具比購買1件B道具多10元,購買2件A道具和3件B道具共需要45元”,即可得出關于x,y的二元一次方程組,解之即可得出結論;(2)設購買A道具m件,則購買B道具(60﹣m)件.①根據總價=單價×數量結合購買兩種道具的總費用不超過620元,即可得出關于m的一元一次不等式,解之取其中的最大整數值即可得出結論;②由A道具購買的件數不少于B道具購買件數,即可得出關于m的一元一次不等式,解之即可得出m的取值范圍,結合①的結論及m為整數值即可得出各購買方案,再求出各購買方案所需費用,比較后即可得出最少費用.解:(1)設購買一件A道具需要x元,購買一件B道具需要y元,依題意,得:,解得:.答:購買一件A道具需要15元,購買一件B道具需要5元.(2)設購買A道具m件,則購買B道具(60﹣m)件.①依題意,得:15m+5(60﹣m)≤620,解得:m≤32.答:A道具最多購買32件.②依題意,得:m≥60﹣m,解得:m≥30,又∵m≤32,且m為整數,∴m=30,31,32.∴該班級共有3種購買方案,方案1:A道具購買30件,B道具購買30件;方案2:A道具購買31件,B道具購買29件;方案3:A道具購買32件,B道具購買28件.方案1所需費用15×30+5×30=600(元),方案2所需費用15×31+5×29=610(元),方案3所需費用15×32+5×28=620(元).∵600<610<620,∴最少購買費用為600元.【點評】本題考查了二元一次方程組的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據各數量之間的關系,正確列出一元一次不等式.26.定義:關于x的方程ax﹣b=0與方程bx﹣a=0(a、b均為不等于0的常數)稱互為“反對方程”,例如:方程2x﹣1=0與方程x﹣2=0互為“反對方程”.(1)若關于x的方程2x﹣3=0與方程3x﹣c=0互為“反對方程”,則c=2;(2)若關于x的方程4x+3m+1=0與方程5x﹣n+2=0互為“反對方程”,求m、n的值;(3)若關于x的方程2x﹣b=0與其“反對方程”的解都是整數,求整數b的值.【分析】(1)根據“反對方程”的定義直接可得答案;(2)將“反對方程”組成方程組求解可得答案;(3)根據“反對方程”2x﹣b=0與bx﹣2=0的解均為整數,可得與都為整數,由此可得答案.解:(1)由題可知,ax﹣b=0與bx﹣a=0(a、b均為不等于0的常數)稱互為“反對方程”,∵2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論