




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
LiteratureReviewaboutSolarRadiation-induced
ThermalEffectonConcreteBridge
Abstract:Changingenvironmentalconditions,especiallytemperature,havebeenobservedtobeacomplicatedfactoraffectingvibrationproperties,suchasfrequencies,modeshapes,anddampingofcivilstructures.Thispaperreviewstechnicalliteratureconcerningsolarradiation-inducedtemperatureeffectonconcretebridge.Mostofthesestudiesfocusonvariationsinfrequenciesofbridgestructures,withsomestudiesonvariationsinmodeshapesanddampingandothertypesofstructures.Itisseenthatthenumericalmodelscansuccessfullypredictthestructuraltemperaturefieldandthermalstressesatdifferenttime.Themethodologyemployedinthepapercanbeappliedtootherconcretebridgesaswell.Keyword:temperature;literature;bridgestructures;methodology
1Introduction
Manyconcretebridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffectsinducedbysolarradiationandambientairtemperature.Experimentsandfieldmeasurementshaveindicatedthatchangingthermalconditionsmayhaveamoresignificanteffectonconcretebridgebehaviorthanoperationalloads.Theheattransferfromsurroundingenvironmentmayinducetemperaturevariationatconcretecomponentsandtherebyproducestructuraldeformationandthermalstressesduetoredundancy.Thethermaleffectsonconcretebridgesevenlongspanbridgeshavebeeninvestigatedbymanyresearchersacrosstheworldsince50yearsagoandsomeapproacheshavebeendevelopedtoexaminetheperformanceofbridgessubjectedtotemperatureloading.Withtherapiddevelopmentofcomputationalmethodsandcomputertechnology,anumberofone-dimensionaltothree-dimensionalfiniteelementmodelshavebeendevelopedsincethe1970s.Mostofthecurrentinvestigationsmainlyfocusonthermaleffectsonconcretebridges.Theconfigurationandperformanceoflongspanbridgessuchassuspensionbridgesarequitedifferentfromthoseofcommonconcretebridges.Itisdifficultandinsufficienttoinvestigatethebridgeperformancethoroughlybyusingthetemperaturedataatafewcomponentsonly.Therefore,calculationofthetemperaturedistributionofthebridgecomponentsisimperativetostudythetemperatureeffects.Alittleworkhasyetbeencarriedouttoexaminethetime-varyingtemperaturefieldofbridgetower.Thispaperaimstoinvestigatethetemperaturedistributionofatowerofalongspansuspensionbridge.
Zukinvestigatedthethermalbehaviorofseveralconcretebridgesandfoundthatthetemperaturedistributionwasaffectedbyairtemperature,wind,humidity,intensityofsolarradiationandmaterialtype.Adamsetal.investigatedtherelationbetweentemperatureandtheaxialresonantfrequencyofabar.Cornwelletal.investigatedthethermalvariationofdynamicpropertiesoftheAlamosaCanyonBridge.Cappslatermeasuredtemperatureandtemperature-inducedlongitudinalmovementsonasteelboxbridgeintheUK.EarlystudiesinthefieldincludethoseofPriesleyandChurchwardandSokai.AskegaardandMossingstudiedathree-spanRCfootbridgeandobserveda10%seasonalhangeinfrequencyovera3-yearperiod.Cornwelletal.investigatedthethermalvariationsinthedynamicpropertiesoftheAlamosaCanyonBridgeandfoundabout5%dailychangesinthefirstthreenaturalfrequencies.PeetersandDeRoeck
1
monitoredtheZ24Bridgecontinuouslyfornearlyayearandtheyreportedabilinearrelationbetweenthefirsttwofrequenciesandthestructuraltemperature.Theyfoundthatthetwofrequenciesincreasedbyabout10%whentemperaturedecreasedfrom0to-7℃.Fortemperaturesabove0℃,thefirstfrequencydecreasedslightlywhenthewearingsurfacetemperaturewentup,whereasthesecondfrequencyincreasedslightlywhenthedecksoffittemperaturewentup.FuandDeWolfstudiedatwo-span,slightlyskewedcompositebridgeandfoundthattheexpansionbearingswereapproximatelypartiallyconstrainedbelow
F.Thefirstthreefrequenciesdecreasedby12.3,16.8,and9.0%respectively,asthetemperatureincreasedfromF(°-17.8℃)toapproximately60F(15.°6℃),whereastheychangedlittleasthetemperaturewasabove60F°.Theauthorsthensimulatedathermalaxialloadandappliedittothegirdereccentricallyforcalculatingthefrequenciesunderdifferenttemperatures.Thechangeinfrequenciesagreedwellwiththemeasurement.Nietal.extracted1-yearmodalpropertiesoftheTingKaucable-stayedbridgeinHongKong.Therelativevariationsinthemeasuredmodalfrequencies(i.e.,theratiooffrequencychangetoaveragefrequencyforeachmode)underweakwindconditionsrangedbetween1.7(the8thmode)and6.7%
(the1stmode)whenbridgetemperaturesrangedbetween3and53 ℃.Theyconcludedthattheeffective
temperature(i.e.,temperatureaveragedoverthecrosssectionweightedbyareas)wasinsufficientinformulatingagoodcorrelationbetweenthemodalfrequenciesandtemperaturesbecauseoftheexistenceoftemperaturegradientoverthecrosssection.MacdonaldandDaniellinvestigatedvariationsinnatural
frequenciesoftheSecondSevernCrossingcablestayedbridgebecauseofwind,temperature,andtrafficloading.Theyreportedthattherewasnoapparenttrendbetweenthenaturalfrequenciesandthemean
bridgedecktemperaturebecausethetemperaturechangewassmall.Desjardinesetal.studiedthevariationsinfrequenciesoftheConfederationBridge(madeofpre-stressedconcrete)overa6-monthperiod.Theyreportedacleartrendofreductioninthemodalfrequenciesbyabout4%,whentheaveragetemperatureof
theconcreteofthebridgevariedfrom-20to+25℃.LiuandDeWolfreportedthat,duringa1-yearmeasurement,thefirstthreefrequenciesofacurvedconcreteboxbridgedecreasedwhenconcrete
temperatureincreased.Alinearregressionanalysisshowedthatfrequenciesdecreasedby0.007,0.008,and0.007HzastemperatureincreasedbyoneFahrenheitdegree,whichisequivalentto0.8,0.7,and0.3%perdegreeCelsius.TheYunyangSuspensionBridgewitha1,490-mmainspanexperiencedabout2%variationinthefirstsixmodalfrequenciesduringaperiodof10months,astheambienttemperatureofthesteel
bridgevariedfrom-5to+50℃.During16daysofcontinuousmonitoringofacable-stayedbridge,Lietal.foundthatthefirstsixfrequenciesvariedbyabout1.5–3.2%asambienttemperaturechangedfrom-11.5to+3.7℃.
Alternatively,fieldmeasurmentisaneffectiveyetpracticalapproachtoobtaintheinformationofbridgetemperatureenvironment,whichprovidesthepossibilitytocarryouttemperatureeffectevaluationfromthepracticalviewpoint.Mostofthecurrentinvestigationsmainlyfocusonthethermalassessmentofbridgedeck.Thefieldmeasurementcanonlyobtainthetemperaturevaluesoflimitedtestingpointsinsteadofthedetailedthermalgradientsoftheconcretestructures.Thetime-varyingeffectsoftemperatureofconcretebridgepiershavenotbeensystematicallyinvestigated.
2
2ThermalEffectonConcreteBridge
2.1Temperaturevariationandthermalstressesonconcretebridgepiers
Manyconcretebridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffectsinducedbysolarradiationandambientairtemperature.Experimentsandfieldmeasurementshaveindicatedthatchangingthermalconditionsmayhaveamoresignificanteffectonconcretebridgebehaviorthanoperationalloads.Theheattransferfromsurroundingenvironmentmayinducetemperaturevariationatconcretecomponentsandtherebyproducestructuraldeformationandthermalstressesduetoredundancy.Thetemperatureeffectsonconcretebridgeshavebeeninvestigatedbymanyresearchersacrosstheworldsince50yearsagoandsomeapproacheshavebeendevelopedtoexaminetheperformanceofbridgessubjectedtotemperatureloading.
Arealhighwaybridge(Fig1) constructedbyconcreteinnorthernChinaistakenastheexampleto
examinethefeasibilityoftheproposedanalyticalapproach.Thebirdeyeviewofthebridge’sisdisplayedinFigure1.Thebridgehasnightspansandthelengthforasinglespanis30m.Thetotalbridgelengthis278.2m.Thebridgepiershavetherectangulartubesizes.Thegeometricsizeofthepiercrosssectionis
2.5minwidthand6.5minlength.Thethicknessofthecrosssectionis0.5m.Thetime-varyingtemperaturefieldsofthepiersurfacearemeasuredbyusingthethermalinfraredimager.
Fig1.Birds’eyeviewofthebridge
Inthispart,dynamictemperaturefieldsandthermalstressesofaconcretepierareactivelystudiedwiththeaidingofthecommercialpackageANSYS.Thedifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionandcomputethethermaldeformationwithintheconcretepier.Thesurfacetemperatureofthepierismeasuredbyusingthethermalinfraredimager.Theambienttemperatureandwindvelocityarealsocollectedatthesametime.Themadeobservationsdemonstratethatthesimulatedtemperaturevariationoftheconcretepieragreeswellwithmeasurementresults.Thethermalgradientof
theconcreteinthethicknessdirectionisalittlelarge.Thehorizontaldeformationismuchlargerthanthatinverticaldeformationduetotheinfluenceoftheconstraintsonthetopandbottomsidesofthepier.Thethermalstressesoftheexamplebridgepierarenotverylargeexceptforthelocalareasontopofthepiers.
3
Itisseenthatthenumericalmodelscansuccessfullypredictthestructuraltemperaturefieldatdifferenttimeinstantthestructuraltime-varyingtemperatureeffects.Themethodologyemployedinthepapercanbeappliedtootherconcretebridgesaswell.
Fig2.Temperaturefieldsofthebridgepier
Fig3.Finiteelementmodel
2.2Time-varyingtemperaturefieldofbridgetower
Longspansuspensionbridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffects
inducedbysolarradiationandambientairtemperature.Theheattransferfromsurroundingenvironment
mayinducetemperaturevariationatbridgecomponentsandtherebyproducestructuraldeformationand
thermalstressesduetoredundancy.Thermaleffectsonlongspanbridgeshavebeeninvestigatedacrossthe
worldtosimulatethetemperaturedistribution ofbridgesandpredictthestructuralresponses.Thermal
effectsonbridgeshavebeeninvestigatedsincethe1960s.Withtherapiddevelopmentofcomputational
methodsandcomputertechnology,anumberofone-dimensional tothree-dimensional finite element
modelshavebeendevelopedsincethe1970s.Mostofthecurrentinvestigationsmainlyfocusonthermal
effectsonconcretebridges.Theconfigurationandperformanceoflongspanbridgessuchassuspension
bridgesarequitedifferent fromthoseofcommonconcretebridges.Itisdifficult andinsufficient to
4
investigatethebridgeperformancethoroughlybyusingthetemperaturedataatafewcomponentsonly.Therefore,calculationofthetemperaturedistributionofthebridgecomponentsisimperativetostudythetemperatureeffects.Alittleworkhasyetbeencarriedouttoexaminethetime-varyingtemperaturefieldofbridgetower.Thispaperaimstoinvestigatethetemperaturedistributionofatowerofalongspansuspensionbridge.
Toexaminethefeasibilityandvalidityoftheproposedapproach,thetowersegmentofalongspansuspensionbridgeconstructedinChinaistakenastheexample.TsingMaBridge(Fig4)inHongKongisalongspansuspensionbridgecarryingadualthree-lanehighwayontheupperlevelofthebridgedeckandtworailwaytracksandtwoprotectedcarriagewaysonthelowerlevelwithinthebridgedeck.ItspansthemainshippingchannelbetweentheTsingYiIslandandtheMaWanIslandwithamainspanof1377mandatotallengthof2132m.Theheightofthetwobridgetowers,theTsingYiTowerandtheMaWanTower,isabout206m,measuredfromthebaseleveltothetowersaddle.Thetwotowersarereinforcedconcretestructureshavingtworeinforcedconcretelegslinkedbyfourreinforcedconcretecross-beamsandsupportedbymassivereinforcedconcreteslabsfoundoncompetentrock(seeFig.1).Thetwotowerssharealmostidenticalstructuralandgeometricfeatures,exceptthatthetopmostportalbeamoftheMaWantoweris0.15mhigherthanthecounterpartoftheTsingYitowerandthustheheightofthetowerlegs.
Fig4Configurationofbridgetower
5
Fig.5Finiteelementofatowersegment
Inthispart,byassumingthetemperaturealongthebridgeheightisconstant,atypicalbridgetowersectionisanalyzedtoobtainthetemperaturedistributionofthesegment.Finefiniteelementmodelofthetowersectionisconstructedanddifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionwithinthecomponentswiththeaidofthecommercialsoftwarepackage.Themethodologyemployedinthepapercanbeappliedtootherlong-spanbridgesaswell.
2.3Temperaturevariationandthermalstressesonconcreteslab
Concreteslabaresubjectedtodaily,seasonal,andyearlythermalactionduetovariationsinsolarradiation
andambientairtemperature.Variationintemperatureofbuildingroofsmaycausenon-uniformdistribution
oftemperatureandinducethermalstress.Excessivethermalstressesmaydamagetheconcreteslab.In
addition,aseriesofexperimentsandfieldinvestigationshavedemonstratedthatthechangingtemperature
conditionsmayhaveamoresignificanteffectonstructuralbehaviourthancommonoperationalloads.Itis
reportedthatmanybuilding structuresaredamagedundertheintensive temperatureloading. The
temperaureeffectsonconcretestructureshavebeeninvestigatedbymanyresearchersacrosstheworld
since100yearsagoandmanyapproacheshavebeendevelopedtoexaminetheperformanceofconcrete
structuresundertemperatureloading.
Mostofthecurrentinvestigationsmainlyfocusonthermaleffectsofconcretestructuresundercommonsolarradiation.Thesheltereffectsofthesolarradiationonthetime-varyingtemperaturedistributionoftheconcretestructureshavenotbeensystematicallyinvestigated.
Toexaminethefeasibilityandvalidityofproposedapproach,theconcreteslabofamulti-storeybuildingconstructedinsouthernChinaistakenastheexample.Thelengthandwidthoftheconcreteslabisabout5.0mand5.0m,respectively.TheconcretematerialoftheslabistheC40.ThefiniteelementmodeloftheconcreteslabisestablishedwiththeaidingofcommercialpackageANSYSasshowninFigure1.
Thefiniteelementmodeloftheconcreteslabisconstructedbyusingthesolid95element.
6
Fig6.ConfigurationofTsingMaBridge:(a)elevationand(b)crosssectionofbridegedeck.
Fig7.Finiteelementmodel
Inthispart,theevaluationoftime-varyingtemperaturedistributionandthermalstressesthermalstressesofaconcreteroofslabiscarriedout.Thesurfacetemperatureoftheconcreteslabismeasuredbyusingthethermalsensors.Theambienttemperatureiscollectedasthethermalboundaryconditionsforthethermalcomputation.FinefiniteelementmodeloftheconcreteslabisconstructedanddifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionwithintheslabwiththeaidofthecommercialsoftwarepackageANSYS.Thesolarradiationmodelisutilizedtoestimatethesolarradiationreceivedby
7
theslabandthesheltereffectsarealsotakenintoconsideration.Thenumerical modelscansuccessfully
predictthestructuraltemperatureatdifferenttime.Themadeobservationsdemonstratethatthesimulatedtemperaturevariationoftheconcreteslabbasedonthesolarradiationmodelagreeswellwithmeasurementresults.Thethermalgradientoftheconcreteslabinthethicknessdirectionisobvious.Themethodologyemployedinthepapercanbeappliedtootherconcretestructuresaswell.
3Conclusions
Thispaperreviewstemperatureeffectonvariationsinmodalpropertiesofcivilstructures.Moststudiesshowthatanincreaseintemperatureleadstoadecreaseinstructuralfrequencies,whereastemperaturehaslittleeffectonmodeshapes,anditseffectondampinghasnotbeenwellunderstoodbecauseoflargeuncertaintyofdamping.Threelaboratory-testedmodelsandtwofield-monitoredlargescalestructureshavebeeninvestigated.Besidessimilarconclusionsasotherresearchershavefound,thefollowingconclusionscanbedrawnfromthepresentstudy:
Variationsinfrequenciesarecausedmainlybythechangeinthemodulusofamaterialunderdifferenttemperatures.Thatis,modalfrequenciesofthesteelstructures,thealuminumbeam,andtheRCstructuresdecreasebyabout0.02,0.03,and0.15%,respectively,whentemperatureincreasesbyonedegreeCelsius,regardlessofmodesandstructuraltypes.Frequenciesofconcretestructuresaremoresensitivetotemperaturechangethanmetallicstructures.
Modeshapesofhigh-risestructuresmayvaryatdifferenttimeinstantsastemperaturesofdifferentcomponentsvaryaswell.Thisisdifferentfromthesituationofsomebridges,inwhichtemperaturesalongthelongitudinaldirectionareregardedasidentical.
Thetemperaturedistributionoflarge-scalestructuresisusuallynon-uniform.Differentcomponentshavedifferentcontributionstotheglobalfrequencies.Usingairtemperatureoraveragedtemperatureofafewmeasurementpointsmayleadtoincorrectquantitativerelationsbetweentemperatureandfrequencies.Heat-transferanalysiscanprovidemorecomprehensivetemperaturedistribution.Thenaglobaleigenvalueanalysiscombiningtherelationofmodulustotemperaturecanpredictamoreaccuraterelationbetweentemperatureandfrequencies.
Young’smodulusofconcreteisusuallymeasuredfromultrasonicmethodsorstress–straindiagram,whichexhibitssignificantuncertainties.Inthenaturalcondition,temperaturevariationisnotsignificant
andthusthemodulusthermalcoefficientisverydifficulttobemeasuredaccurately.Ontheotherhand,vibrationfrequencyofsimplestructurescanbemeasuredwithhighaccuracy,thankstotherapiddevelopmentofhardwareandanalyticaltechniquesinmodaltesting.Inaddition,modaltestingisa
nondestructivetechniqueandcanbecarriedoutrepeatedlyunderdifferenttemperatureconditions.Thisis
anotheradvantageofthevibration-basedmethodasthetraditionaluni-axialcompressiontest maycause
damagetothespecimenandthuscannotbecarriedoutrepeatedlyunderdifferenttemperatureconditions.Consequently,thevibration-basedmethodcanbeapromisingalternativeapproachtomeasurethematerialthermalcoefficientofmodulus:largertemperaturevariation,largerfrequencychanges,andthusresultsinamoreaccuratethermalcoefficientofmodulus.
8
Forpracticalstructures,factorssuchasvaryingboundaryconditions,loadconditions,anddamagesmayalsoaffectthestructuralvibrationproperties.Measurementnoisemayalsomaskthisvariation.Inaddition,itisverydifficulttoseparatetheeffectsfromdifferentsources.Therefore,controlledlaboratory
experimentsarenecessaryandimperativetoprovideaccurateandreliableresultsregardingthetemperature
effectonthestructural vibrationproperties.Inlaboratoryexperimentsinthispaper,varyingtemperature
canbethemainreasonofthefrequencychangesandfrequenciescanbemeasuredveryaccurately.For
example,thefirstauthorhasconductedamodaltestingonaRCslabrepeatedlyunderastabletemperature
condition.Itshownthatthecoefficientofvariation(ratioofstandarddeviationtomeanvalue)ofthefirst
fourmodalfrequencieswere0.04,0.09,0.31,and0.35%,respectively,whichisequivalenttoabout0.3–2.3degreestemperaturevariationofconcrete.Doeblingetal.alsoestimat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目管理執(zhí)行能力試題及答案
- 2025年國內(nèi)外投資環(huán)境的比較研究試題及答案
- 注會考生考前心理疏導(dǎo)技巧試題及答案
- 2024年項目管理資格考試考前準(zhǔn)備的全景分析試題及答案
- 注冊會計師考試內(nèi)容更新與變化分析試題及答案
- 橡皮壩河道清淤施工方案
- 貼心指導(dǎo)證券從業(yè)資格試題及答案
- 注冊會計師理論與實踐試題及答案
- 生物技術(shù)在生態(tài)修復(fù)工程中的應(yīng)用考核試卷
- 2024年項目管理協(xié)作機制試題及答案
- 12J12無障礙設(shè)施圖集
- 【八年級下冊地理中圖北京版】期中真題必刷卷B-【期中真題必刷卷】(北京專用)(解析版)
- 《鐵路技術(shù)管理規(guī)程》(普速鐵路部分)
- 白細胞疾病及其檢驗(血液學(xué)檢驗課件)
- 案例3 哪吒-全球首個“海空一體”跨域航行器平臺
- 車隊運營中的司機管理策略研究
- 新生兒臍部出血的護理
- 實驗室的智能化設(shè)計與建設(shè)
- 《中國海洋大學(xué)》課件
- 《鹽津鋪子公司盈利能力探析實例報告(10000字論文)》
- 2025年中考語文課內(nèi)名著閱讀專題復(fù)習(xí):第10部 《水滸傳》課件
評論
0/150
提交評論