




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter7
LTIDiscrete-TimeSystemsintheTransformDomainTypesofTransferFunctionsThetime-domainclassificationofanLTIdigitaltransferfunctionsequenceisbasedonthelengthofitsimpulseresponse: -Finiteimpulseresponse(FIR)transferfunction -Infiniteimpulseresponse(IIR)transferfunction★
TypesofTransferFunctionsSeveralotherclassificationsarealsousedInthecaseofdigitaltransferfunctionswithfrequency-selectivefrequencyresponses,oneclassificationisbasedontheshapeofthemagnitudefunctionH(ei)ortheformofthephasefunction
q(w)Basedonthisfourtypesofidealfiltersareusuallydefined§7.1.1DigitalFilterswithIdealMagnitudeResponseOnecommonclassificationisbasedonanidealmagnituderesponseAdigitalfilterdesignedtopasssignalcomponentsofcertainfrequencieswithoutdistortionshouldhaveafrequencyresponseequalto1atthesefrequencies,andshouldhaveafrequencyresponseequalto0atallotherfrequencies§7.1.1DigitalFilterswithIdealMagnitudeResponseTherangeoffrequencieswherethefrequencyresponsetakesthevalueofoneiscalledthepassbandTherangeoffrequencieswherethefrequencyresponsetakesthevalueofzeroiscalledthestopband§7.1.1DigitalFilterswithIdealMagnitudeResponseFrequencyresponsesofthefourpopulartypesofidealdigitalfilterswithrealimpulseresponsecoefficientsareshownbelow:§7.1.1DigitalFilterswithIdealMagnitudeResponseThefrequenciesc,c1,andc2arecalledthecutofffrequenciesAnidealfilterhasamagnituderesponseequaltooneinthepassbandandzerointhestopband,andhasazerophaseeverywhere§7.1.1DigitalFilterswithIdealMagnitudeResponseLowpassfilter:Passband:0≤ω≤ωcStopband:ωc≤ω≤πHighpassfilter:Passband:ωc≤ω≤πStopband:0≤ω≤ωcBandpassfilter:Passband:ωc1≤ω≤ωc2
Stopband:0≤ω<ωc1and
ωc2<ω<π
Bandstopfilter:Stopband:ωc1<ω<ωc2
Passband:0≤ω≤ωc1and
ωc2≤ω≤π
§7.1.1DigitalFilterswithIdealMagnitudeResponseEarlierinthecoursewederivedtheinverseDTFTofthefrequencyresponseHLP(ej)oftheideallowpassfilter:(p132EMAPLE3.8)hLP[n]=sincn/n,-<n<Wehavealsoshownthattheaboveimpulseresponseisnotabsolutelysummable,andhence,thecorrespondingtransferfunctionisnotBIBOstable§7.1.1DigitalFilterswithIdealMagnitudeResponseAlso,hLP[n]isnotcausalandisofdoublyinfinitelengthTheremainingthreeidealfiltersarealsocharacterizedbydoublyinfinite,noncausalimpulseresponsesandarenotabsolutelysummableThus,theidealfilterswiththeideal“brickwall”frequencyresponsescannotberealizedwithfinitedimensionalLTIfilter§7.1.1DigitalFilterswithIdealMagnitudeResponseTodevelopstableandrealizabletransferfunctions,theidealfrequencyresponsespecificationsarerelaxedbyincludingatransitionbandbetweenthepassbandandthestopbandThispermitsthemagnituderesponsetodecayslowlyfromitsmaximumvalueinthepassbandtothezerovalueinthestopband§7.1.1DigitalFilterswithIdealMagnitudeResponseMoreover,themagnituderesponseisallowedtovarybyasmallamountbothinthepassbandandthestopbandTypicalmagnituderesponsespecificationsofalowpassfilterareshownas:§7.1.2
BoundedRealTransferFunctionsLetx[n]andy[n]denote,respectively,theinputandoutputofadigitalfiltercharacterizedbyaBRtransferfunctionH(z)withX(ejω)andY(ejω)denotingtheirDTFTsforallvaluesofwAcausalstablereal-coefficienttransferfunctionH(z)isdefinedasaboundedreal(BR)transferfunctionif§7.1.2
BoundedRealTransferFunctionsIntegratingtheabovefrom-πtoπ,andapplyingParseval’srelationwegetThentheconditionimpliesthat§7.1.2
BoundedRealTransferFunctionsThus,forallfinite-energyinputs,theoutputenergyislessthanorequaltotheinputenergyimplyingthatadigitalfiltercharacterizedbyaBRtransferfunctioncanbeviewedasapassivestructureIf,thentheoutputenergyisequaltotheinputenergy,andsuchadigitalfilteristhereforealosslesssystem§7.1.2
BoundedRealTransferFunctionsTheBRandLBRtransferfunctionsarethekeystotherealizationofdigitalfilterswithlowcoefficientsensitivityAcausalstablereal-coefficienttransferfunctionH(z)withisthuscalledalosslessboundedreal(LBR)transferfunction§7.1.2
BoundedRealTransferFunctionsExample7.1:ConsiderthecausalstableIIRtransferfunctionwhereKisarealconstantItssquare-magnitudefunctionisgivenby§7.1.2
BoundedRealTransferFunctionsThus,forα>0,themaximumvalueof|H(ejω)|2isequaltoK2/(1-α)2atω=0andtheminimumvalueisequaltoK2/(1-α)2atω=πOntheotherhand,forα<0,themaximumvalueof2αcosωisequalto-2α
atω=πandtheminimumvalueisequalto2α
atω=0§7.1.2
BoundedRealTransferFunctionsHere,themaximumvalueof|H(ejω)|2isequaltoK2/(1-α)2atω=πandtheminimumvalueisequaltoK2/(1-α)2atω=0Hence,themaximumvaluecanbemadeequalto1bychoosingK=±(1-α),inwhichcasetheminimumvaluebecomes(1-α)2/(1+α)2
§7.1.2
BoundedRealTransferFunctionsHence,isaBRfunctionforK=±(1-α),
Plotsofthemagnitudefunctionforα=±0.5withvaluesofKchosentomakeH(z)aBRfunctionareshownonthenextslide§7.1.2
BoundedRealTransferFunctionsHighpassfilterLowpassfilter§7.1.3AllpassTransferFunction
iscalledanallpasstransferfunctionAnM-thordercausalreal-coefficientallpasstransferfunctionisoftheformDefinition:AnIIRtransferfunctionA(z)withunitymagnituderesponseforallfrequencies,i.e.,§7.1.3AllpassTransferFunctionIfwedenotethedenominatorpolynomialsofAM(z)asDM(z):
Notefromtheabovethatifz=rejisapoleofarealcoefficientallpasstransferfunction,thenithasazeroatz=(1/r)e-jthenitfollowsthatAM(z)canbewrittenas:§7.1.3AllpassTransferFunctionThenumeratorofareal-coefficientallpasstransferfunctionissaidtobethemirror-imagepolynomialofthedenominator,andviceversa~~
Weshallusethenotationtodenotethemirror-imagepolynomialofadegree-MpolynomialDM(z),i.e.,§7.1.3AllpassTransferFunction
Theexpressionimpliesthatthepolesandzerosofareal-coefficientallpassfunctionexhibitmirror-imagesymmetryinthez-plane§7.1.3AllpassTransferFunctionTherefore
Hence
Toshowthatweobservethat§7.1.3AllpassTransferFunctionNow,thepolesofacausalstabletransferfunctionmustlieinsidetheunitcircleinthez-planeHence,allzerosofacausalstableallpasstransferfunctionmustlieoutsidetheunitcircleinamirror-imagesymmetrywithitspolessituatedinsidetheunitcircle§7.1.3AllpassTransferFunctionFigurebelowshowstheprincipalvalueofthephaseofthe3rd-orderallpassfunctionNotethediscontinuitybytheamountof2πinthephaseθ(ω)§7.1.3AllpassTransferFunctionIfweunwrapthephasebyremovingthediscontinuity,wearriveattheunwrappedphasefunctionθc(ω)indicatedbelowNote:Theunwrappedphasefunctionisacontinuousfunctionofω§7.1.3AllpassTransferFunctionTheunwrappedphasefunctionofanyarbitrarycausalstableallpassfunctionisacontinuousfunctionofω
Properties(1)Acausalstablereal-coefficientallpasstransferfunctionisalosslessboundedreal(LBR)functionor,equivalently,acausalstableallpassfilterisalosslessstructure§7.1.3AllpassTransferFunction(2)ThemagnitudefunctionofastableallpassfunctionA(z)satisfies:(3)Letτ(ω)denotethegroupdelayfunctionofanallpassfilterA(z),i.e.,§7.1.3AllpassTransferFunctionTheunwrappedphasefunctionθc(ω)ofastableallpassfunctionisamonotonicallydecreasingfunctionofwsothatt(w)iseverywherepositiveintherange0<w<pThegroupdelayofanM-thorderstablereal-coefficientallpasstransferfunctionsatisfies:§7.1.3AllpassTransferFunctionASimpleApplicationAsimplebutoftenusedapplicationofanallpassfilterisasadelayequalizerLetG(z)bethetransferfunctionofadigitalfilterdesignedtomeetaprescribedmagnituderesponseThenonlinearphaseresponseofG(z)canbecorrectedbycascadingitwithanallpassfilterA(z)sothattheoverallcascadehasaconstantgroupdelayinthebandofinterest§7.1.3AllpassTransferFunctionG(z)A(z)
OverallgroupdelayisthegivenbythesumofthegroupdelaysofG(z)andA(z)
Since,wehave§7.1.3AllpassTransferFunctionExample:Figurebelowshowsthegroupdelayofa4thorderellipticfilterwiththefollowingspecifications:ωp=0.3π,δp=1dB,δs=35dB§7.1.3AllpassTransferFunctionFigurebelowshowsthegroupdelayoftheoriginalellipticfiltercascadedwithan8thorderallpasssectiondesignedtoequalizethegroupdelayinthepassband§7.2ClassificationBasedonPhaseCharacteristicsAsecondclassificationofatransferfunctioniswithrespecttoitsphasecharacteristicsInmanyapplications,itisnecessarythatthedigitalfilterdesigneddoesnotdistortthephaseoftheinputsignalcomponentswithfrequenciesinthepassband§7.2.1Zero-PhaseTransferFunctionsOnewaytoavoidanyphasedistortionistomakethefrequencyresponseofthefilterrealandnonnegative,i.e.,todesignthefilterwithazerophasecharacteristicHowever,itisimpossibletodesignacausaldigitalfilterwithazerophase§7.2.1Zero-PhaseTransferFunctionsFornon-real-timeprocessingofreal-valuedinputsignalsoffinitelength,zero-phasefilteringcanbeverysimplyimplementedbyrelaxingthecausalityrequirementOnezero-phasefilteringschemeissketchedbelowx[n]v[n]u[n]w[n]H(z)H(z)u[n]=v[-n],y[n]=w[-n]§7.2.1Zero-PhaseTransferFunctionsItiseasytoverifytheaboveschemeinthefrequencydomainLetX(ej),V(ej),U(ej),W(ej),andY(ej) denotetheDTFTsofx[n],v[n],u[n],w[n],andy[n],respectivelyFromthefigureshownearlierandmakinguseofthesymmetryrelationswearriveattherelationsbetweenvariousDTFTsasgivenonthenextslide§7.2.1Zero-PhaseTransferFunctionsV(ej)=H(ej)X(ej),W(ej)=H(ej)U(ej)
U(ej)=V*(ej),Y(ej)=W*(ej)CombiningtheaboveequationswegetY(ej)=W*(ej)=H*(ej)U*(ej)
=H*(ej)V(ej)=H*(ej)H(ej)X(ej)=|H(ej)|2X(ej)Thisisazero-phasefilterwithafrequencyresponse|H(ej)|2x[n]v[n]u[n]w[n]H(z)H(z)u[n]=v[-n],y[n]=w[-n]§7.2.1Zero-PhaseTransferFunctionsThefunctionfiltfiltimplementstheabovezero-phasefilteringschemeInthecaseofacausaltransferfunctionwithanonzerophaseresponse,thephasedistortioncanbeavoidedbyensuringthatthetransferfunctionhasaunitymagnitudeandalinear-phasecharacteristicinthefrequencybandofinterest§7.2.2Linear-PhaseTransferFunctionsThemostgeneraltypeofafilterwithalinearphasehasafrequencyresponsegivenbyH(ej)=e-jD whichhasalinearphasefromw=0tow=2pNotealso|H(ej)|=1
()=D
§7.2.2Linear-PhaseTransferFunctionsTheoutputy[n]ofthisfiltertoaninput x[n]=Aejnisthengivenbyy[n]=
Aej(n-D)
Ifxa(t)andya(t)representthecontinuous-timesignalswhosesampledversions,sampledatt=nT,arex[n]andy[n]givenabove,thenthedelaybetweenxa(t)andya(t)ispreciselythegroupdelayofamountD§7.2.2Linear-PhaseTransferFunctionsIfDisaninteger,theny[n]isidenticaltox[n],butdelayedbyDsamplesIfDisnotaninteger,y[n],beingdelayedbyafractionalpart,isnotidenticaltox[n]Inthelattercase,thewaveformoftheunderlyingcontinuous-timeoutputisidenticaltothewaveformoftheunderlyingcontinuous-timeinputanddelayedDunitsoftime
§7.2.2Linear-PhaseTransferFunctionsFigurerightshowsthefrequencyresponseifalowpassfilterwithalinear-phasecharacteristicinthepassband§7.2.2Linear-PhaseTransferFunctionsSincethesignalcomponentsinthestopbandareblocked,thephaseresponseinthestopbandcanbeofanyshapeExample-Determinetheimpulseresponseofanideallowpassfilterwithalinearphaseresponse:§7.2.2Linear-PhaseTransferFunctionsApplyingthefrequency-shiftingpropertyoftheDTFTtotheimpulseresponseofanidealzero-phaselowpassfilterwearriveat
Asbefore,theabovefilterisnoncausalandofdoublyinfinitelength,andhence,unrealizable§7.2.2Linear-PhaseTransferFunctionsBytruncatingtheimpulseresponsetoafinitenumberofterms,arealizableFIRapproximationtotheideallowpassfiltercanbedevelopedThetruncatedapproximationmayormaynotexhibitlinearphase,dependingonthevalueofn0chosen§7.2.2Linear-PhaseTransferFunctionsIfwechoosen0=N/2withNapositiveinteger,thetruncatedandshiftedapproximation^willbealengthN+1causallinear-phaseFIRfilter§7.2.2Linear-PhaseTransferFunctionsFigurebelowshowsthefiltercoefficientsobtainedusingthefunctionsincfortwodifferentvaluesofNN=12N=13§7.2.2Linear-PhaseTransferFunctionsBecauseofthesymmetryoftheimpulseresponsecoefficientsasindicatedinthetwofigures,thefrequencyresponseofthetruncatedapproximationcanbeexpressedas:^^~where,calledthezero-phaseresponseoramplituderesponse,isarealfunctionofw~★§7.2.3Minimum-PhaseandMaximum-PhaseTransferFunctions
Bothtransferfunctionshaveapoleinsidetheunitcircleatthesamelocationz=-aandarestableButthezeroofH1(z)isinsidetheunitcircleatz=-b,whereas,thezeroofH2(z)isatz=1/b situatedinamirror-imagesymmetry
Considerthetwo1st-ordertransferfunctions:§7.2.3Minimum-PhaseandMaximum-PhaseTransferFunctionsFigurebelowshowsthepole-zeroplotsofthetwotransferfunctionsH1(z)H2(z)§7.2.3Minimum-PhaseandMaximum-PhaseTransferFunctionsHowever,bothtransferfunctionshaveanidenticalmagnitudefunctionas
Thecorrespondingphasefunctionsare§7.2.3Minimum-PhaseandMaximum-PhaseTransferFunctionsAcausalstabletransferfunctionwithallzerosinsidetheunitcircleiscalledaminimum-phasetransferfunctionAcausalstabletransferfunctionwithallzerosoutsidetheunitcircleiscalledamaximum-phasetransferfunctionAnynonminimum-phasetransferfunctioncanbeexpressedastheproductofaminimum-phasetransferfunctionandastableallpasstransferfunction§7.2.3Minimum-PhaseandMaximum-PhaseTransferFunctionsGeneralizingtheaboveresult,let
Hm(z)beacausalstabletransferfunctionwithallzerosinsidetheunitcircleandletH(z)beanothercausalstabletransferfunctionsatisfying|H(ejω)|=|Hm(ejω)|ThesetwotransferfunctionsarethenrelatedthroughH(z)=Hm(z)A(z)whereA(z)isacausalstableallpassfunction§7.2.3Minimum-PhaseandMaximum-PhaseTransferFunctionsExample7.4(p367):considerthemixed-phasetransferfunction
WecanrewriteH(z)as§7.2.3Minimum-PhaseandMaximum-PhaseTransferFunctionsAmin-phasecausalstabletransferfunctionHm(z)alsohasadelaythatissmallerthanthegroupdelayofanonmin-phasesystemwhichhavethesamemagnituderesponse.Forsamemagnituderesponse,and§7.3TypesofLinear-PhaseFIRTransferFunctionsItisnearlyimpossibletodesignalinear-phaseIIRtransferfunctionItisalwayspossibletodesignanFIRtransferfunctionwithanexactlinear-phaseresponseWenowdeveloptheformsofthelinear-phaseFIRtransferfunctionH(z)withrealimpulseresponseh[n]ConsideracausalFIRtransferfunctionH(z)oflengthN+1,i.e.,oforderN:§7.3TypesofLinear-PhaseFIRTransferFunctionsIfH(z)istohavealinear-phase,itsfrequencyresponsemustbeoftheformWherecandβareconstants,and,calledtheamplituderesponse,alsocalledthezero-phaseresponse,isarealfunctionofω
★§7.3TypesofLinear-PhaseFIRTransferFunctionsForarealimpulseresponse,themagnituderesponse|H(ejω)|isanevenfunctionof,i.e.,|H(ejω)|=|H(e-jω)|Since,theamplituderesponseistheneitheranevenfunctionoranoddfunctionofω,i.e.§7.3TypesofLinear-PhaseFIRTransferFunctionsThefrequencyresponsesatisfiestherelationH(ejω)=H*(e-jω),orequivalently,therelationIfisanevenfunction,thentheaboverelationleadstoejβ=e-jβimplyingthateitherβ=0orβ=π§7.3TypesofLinear-PhaseFIRTransferFunctionsFromWehaveSubstitutingthevalueofβintheaboveweget§7.3TypesofLinear-PhaseFIRTransferFunctionsReplacingωwith–ω
inthepreviousequationwegetMakingachangeofvariablel=N-n,werewritetheaboveequationas§7.3TypesofLinear-PhaseFIRTransferFunctionsAs,wehaveh[n]e-jω(c+n)=h[N-n]ejω(c+N-n)Theaboveleadstotheconditionh[n]=h[N-n],0≤n≤NWithc=-N/2Thus,theFIRfilterwithanevenamplituderesponsewillhavealinearphaseifithasasymmetricimpulseresponse§7.3TypesofLinear-PhaseFIRTransferFunctionsIfisanoddfunctionof
ω,thenfromWegetejβ=-e-jβas
Theaboveissatisfiedifβ=2π
orβ=-2πThenReducesto§7.3TypesofLinear-PhaseFIRTransferFunctionsThelastequationcanberewrittenasAs,fromtheaboveweget§7.3TypesofLinear-PhaseFIRTransferFunctionsMakingachangeofvariablel=N-n,werewritethelastequationasEquatingtheabovewithWearriveattheconditionforlinearphaseas§7.3TypesofLinear-PhaseFIRTransferFunctionsh[n]=-h[N-n],0nN withc=-N/2ThereforeaFIRfilterwithanoddamplituderesponsewillhavelinear-phaseresponseifithasanantisymmetricimpulseresponse§7.3TypesofLinear-PhaseFIRTransferFunctionsSincethelengthoftheimpulseresponsecanbeeitherevenorodd,wecandefinefourtypesoflinear-phaseFIRtransferfunctionsForanantisymmetricFIRfilterofoddlength,i.e.,Neven h[N/2]=0Weexaminenexttheeachofthe4cases§7.3TypesofLinear-PhaseFIRTransferFunctionsType1:N=8Type2:N=7Type3:N=8Type4:N=7§7.3TypesofLinear-PhaseFIRTransferFunctionsType1:SymmetricImpulseResponsewithOddLengthInthiscase,thedegreeNisevenAssumeN=8forsimplicityThetransferfunctionH(z)isgivenby§7.3TypesofLinear-PhaseFIRTransferFunctionsBecauseofsymmetry,wehaveh[0]=h[8],h[1]=h[7],h[2]=h[6],andh[3]=h[5]Thus,wecanwrite§7.3TypesofLinear-PhaseFIRTransferFunctionsThecorrespondingfrequencyresponseisthengivenby
Thequantityinsidethebracesisarealfunctionofw,andcanassumepositiveornegativevaluesin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國數碼3c涂料行業需求分析及投資發展前景調研報告
- 傳熱學考試模擬題(附答案)
- 臨床診斷學考試模擬題含答案
- 2025年陜西省漢中市寧強縣中考一模語文試題(原卷版+解析版)
- 聚丙烯腈纖維單體合成考核試卷
- 自然災害的風險評估與防范考核試卷
- 橡膠材料性質與應用考核試卷
- 石墨在新能源儲存系統材料的選擇考核試卷
- 海洋石油鉆探的深海鉆探事故案例分析考核試卷
- 搬運設備負載能力分析考核試卷
- 《空氣動力學與飛行原理》空氣動力學-課件
- 營業執照地址變更申請書
- 生物制藥無菌技術進展-深度研究
- 大米生產與食品安全
- 2025年中國氫氣傳感器行業市場深度分析及投資策略研究報告
- 2025年全球及中國依西美坦片行業頭部企業市場占有率及排名調研報告
- 某院護理人員對常用中醫護理技術知信行現狀研究【復制】
- 專題18-地質地貌形成過程(原卷版)
- 綜合管理部門車輛安全生產職責模版(2篇)
- 《西游記》講解學習
- DB33 766-2015 工業氣體空分產品單位綜合電耗限額及計算方法
評論
0/150
提交評論