




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,BC邊上的高等于,則()A. B. C. D.2.已知為兩條不同的直線,為兩個不同的平面,給出下列命題:①若,,則;②若,,則;③若,,則;④若,,,則.其中正確的命題是()A.②③ B.①③ C.②④ D.①④3.有一個內角為120°的三角形的三邊長分別是m,m+1,m+2,則實數(shù)m的值為()A.1 B. C.2 D.4.若,是夾角為的兩個單位向量,則與的夾角為()A. B. C. D.5.某公司在甲、乙、丙、丁四個地區(qū)分別有150,120,180,150個銷售點.公司為了調查產品銷售情況,需從這600個銷售點中抽取一個容量為100的樣本.記這項調查為①;在丙地區(qū)有20個大型銷售點,要從中抽取7個調查其銷售收入和售后服務等情況,記這項調查為②,則完成①,②這兩項調查宜采用的抽樣方法依次是()A.分層抽樣法,系統(tǒng)抽樣法 B.分層抽樣法,簡單隨機抽樣法C.系統(tǒng)抽樣法,分層抽樣法 D.簡單隨機抽樣法,分層抽樣法6.如果執(zhí)行右面的框圖,輸入,則輸出的數(shù)等于()A. B. C. D.7.若,,,點C在AB上,且,設,則的值為()A. B. C. D.8.已知為等差數(shù)列,其前項和為,若,,則公差等于()A. B. C. D.9.集合,,則()A. B.C. D.10.在復平面內,復數(shù)滿足,則的共軛復數(shù)對應的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若角的終邊經過點,求的值.12.已知數(shù)列滿足,,則_______;_______.13.設為等差數(shù)列,若,則_____.14.在明朝程大位《算術統(tǒng)宗》中有這樣的一首歌謠:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈”.這首古詩描述的這個寶塔古稱浮屠,本題說“寶塔一共有七層,每層懸掛的紅燈數(shù)是上一層的2倍,共有381盞燈,問塔頂有幾盞燈?”根據(jù)上述條件,從上往下數(shù)第二層有___________盞燈.15.若關于的不等式的解集為,則__________16.如圖,長方體的體積是120,E為的中點,則三棱錐E-BCD的體積是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.的內角的對邊分別為.(1)求證:;(2)在邊上取一點P,若.求證:.18.已知,,,求.19.已知為坐標原點,,,若.(Ⅰ)求函數(shù)的單調遞減區(qū)間;(Ⅱ)當時,若方程有根,求的取值范圍.20.已知數(shù)列的前項和為,且,求數(shù)列的通項公式.21.已知數(shù)列an的前n項和為Sn,a1(1)分別求數(shù)列an(2)若對任意的n∈N*,
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:設,故選C.考點:解三角形.2、B【解析】
利用空間中線面平行、線面垂直、面面平行、面面垂直的判定與性質即可作答.【詳解】垂直于同一條直線的兩個平面互相平行,故①對;平行于同一條直線的兩個平面相交或平行,故②錯;若,,,則或與為異面直線或與為相交直線,故④錯;若,則存在過直線的平面,平面交平面于直線,,又因為,所以,又因為平面,所以,故③對.故選B.【點睛】本題主要考查空間中,直線與平面平行或垂直的判定與性質,以及平面與平面平行或垂直的判定與性質,屬于基礎題型.3、B【解析】
由已知利用余弦定理可得,解方程可得的值.【詳解】在三角形中,由余弦定理得:,化簡可得:,解得或(舍).故選:B.【點睛】本題主要考查了余弦定理在解三角形中的應用,考查了方程思想,屬于基礎題.4、A【解析】
根據(jù)條件可求出,,從而可求出,這樣即可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】由題得;,,所以;;又;的夾角為.故選.【點睛】考查向量數(shù)量積的運算及計算公式,向量長度的求法,向量夾角的余弦公式,向量夾角的范圍.5、B【解析】
此題為抽樣方法的選取問題.當總體中個體較少時宜采用簡單隨機抽樣法;當總體中的個體差異較大時,宜采用分層抽樣;當總體中個體較多時,宜采用系統(tǒng)抽樣.【詳解】依據(jù)題意,第①項調查中,總體中的個體差異較大,應采用分層抽樣法;第②項調查總體中個體較少,應采用簡單隨機抽樣法.
故選B.【點睛】本題考查隨機抽樣知識,屬基本題型、基本概念的考查.6、D【解析】試題分析:當時,該程序框圖所表示的算法功能為:,故選D.考點:程序框圖.7、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.8、C【解析】
由題意可得,又,所以,故選C.【點睛】本題考查兩個常見變形公式和.9、B【解析】
求出中不等式的解集確定出,找出與的交集即可.【詳解】解:由中不等式變形得:,解得:,即,,,故選:.【點睛】本題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵,屬于基礎題.10、A【解析】
把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡,再由共軛復數(shù)的概念得答案.【詳解】由z(1﹣i)=2,得z=,∴.則z的共軛復數(shù)對應的點的坐標為(1,﹣1),位于第四象限.故選D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由條件利用任意角的三角函數(shù)的定義,求得和的值,從而可得的值.【詳解】因為角的終邊經過點,所以,,則.故答案為:【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎題.12、【解析】
令代入可求得;方程兩邊取倒數(shù),構造出等差數(shù)列,即可得答案.【詳解】令,則;∵,∴數(shù)列為等差數(shù)列,∴,∴.故答案為:;.【點睛】本題考查數(shù)列的遞推關系求通項,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意兩邊取倒數(shù),構造新等差數(shù)列的方法.13、【解析】
根據(jù)等差數(shù)列的性質:在等差數(shù)列中若則即可【詳解】故答案為:【點睛】本題主要考查的等差數(shù)列的性質:若則,這一性質是常考的知識點,屬于基礎題。14、6.【解析】
根據(jù)題意可將問題轉化為等比數(shù)列中,已知和,求解的問題;利用等比數(shù)列前項和公式可求得,利用求得結果.【詳解】由題意可知,每層懸掛的紅燈數(shù)成等比數(shù)列,設為設第層懸掛紅燈數(shù)為,向下依次為且即從上往下數(shù)第二層有盞燈本題正確結果;【點睛】本題考查利用等比數(shù)列前項和求解基本量的問題,屬于基礎題.15、1【解析】
根據(jù)二次不等式和二次方程的關系,得到是方程的兩根,由根與系數(shù)的關系得到的值.【詳解】因為關于的不等式的解集為所以是方程的兩根,,由根與系數(shù)的關系得,解得【點睛】本題考查一元二次不等式和一元二次方程之間的關系,根與系數(shù)之間的關系,屬于簡單題.16、10.【解析】
由題意結合幾何體的特征和所給幾何體的性質可得三棱錐的體積.【詳解】因為長方體的體積為120,所以,因為為的中點,所以,由長方體的性質知底面,所以是三棱錐的底面上的高,所以三棱錐的體積.【點睛】本題蘊含“整體和局部”的對立統(tǒng)一規(guī)律.在幾何體面積或體積的計算問題中,往往需要注意理清整體和局部的關系,靈活利用“割”與“補”的方法解題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)詳見解析.【解析】
(1)余弦定理的證明其實在課本就直接給出過它向量方法的證明,通過,等向量模長相等就可,當然我們還可以通過坐標的運算完成(如方法二)(2)通過點P,將三角形分割,這種題中多注意幾個相等(公共邊相等,)我們可以得到相對應的等量關系,完成本題.【詳解】(1)證法一:如圖,即證法二:已知中所對邊分別為,以為原點,所在直線為軸建立直角坐標系,則,所以(2)令,由余弦定理得:,因為所以所以所以【點睛】(1)向量既有大小又有方向.在幾何中是一種很重要的工具,比如三角形中,三邊有大小,角度問題我們可以轉化為向量夾角相關,所以很容易想到向量方法.(2)解組合三角形問題,多注重圖形中一些恒等關系比如邊長、角度問題.18、11【解析】
根據(jù)題設條件,結合三角數(shù)的基本關系式,分別求得,和,再利用兩角和的正切的公式,進行化簡、運算,即可求解.【詳解】由,由,可得又由,所以,由,得,可得,所以,即.【點睛】本題主要考查了兩角和與差的正切函數(shù)的化簡、求值問題,其中解答中熟記兩角和與差的正切公式,準確運算是解答的關鍵,著重考查了推理與運算能力,試題有一定的難度,屬于中檔試題.19、(1)的單調減區(qū)間為;(2).【解析】試題分析:(1)根據(jù)向量點積的坐標運算得到,根據(jù)正弦函數(shù)的單調性得到單調遞減區(qū)間;(2)將式子變形為.有解,轉化為值域問題.解析:(Ⅰ)∵,,∴其單調遞減區(qū)間滿足,,所以的單調減區(qū)間為.(Ⅱ)∵當時,方程有根,∴.∵,∴,∴,∴,∴.點睛:這個題目考查了,向量點積運算,三角函數(shù)的化一公式,,正弦函數(shù)的單調性問題,三角函數(shù)的值域和圖像問題.第二問還要用到了方程的零點的問題.一般函數(shù)的零點和方程的根,圖象的交點是同一個問題,可以互相轉化.20、【解析】
當時,,當時,,即可得出.【詳解】∵已知數(shù)列的前項和為,且,當時,,當時,,檢驗:當時,不符合上式,【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農作物種子選種原則試題及答案
- 2024年體育經紀人資格考試重點試題及答案
- 2025年國際金融理財師考試內容結構分析試題及答案
- 深入理解項目管理考試的知識細節(jié)與應用試題及答案
- 項目管理中的數(shù)據(jù)統(tǒng)計試題及答案
- 2024年項目管理考試知識總結試題及答案
- 項目管理復雜項目案例分析試題及答案
- 考試大綱2025年證券從業(yè)資格證考試試題及答案
- 證券從業(yè)資格證復習技巧試題及答案
- 重要審計風險的識別與應對試題及答案
- 北斗衛(wèi)星導航理論與應用課件(完整版)
- 蝦苗購銷合同模板
- 信號基礎信號—聯(lián)鎖系統(tǒng)
- 2020最新八年級下冊《道德與法治》知識點總結(最全版)
- 儲氣罐年度檢驗報告
- 數(shù)學教師實習日記16篇
- 財產保全申請登記表
- 家裝施工驗收手冊(共13頁)
- 《責任勝于能力》PPT課件.ppt
- 先后天八卦與風水羅盤131712904
- (完整版)氨法煉鋅項目建議書
評論
0/150
提交評論