




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.2.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.3.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.34.在函數:①;②;③;④中,最小正周期為的所有函數為()A.①②③ B.①③④ C.②④ D.①③5.已知函數,為圖象的對稱中心,若圖象上相鄰兩個極值點,滿足,則下列區間中存在極值點的是()A. B. C. D.6.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有()種.A.360 B.240 C.150 D.1207.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.48.已知平面向量,,,則實數x的值等于()A.6 B.1 C. D.9.當時,函數的圖象大致是()A. B.C. D.10.已知菱形的邊長為2,,則()A.4 B.6 C. D.11.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數,那么a+b的值是A. B.C. D.12.已知復數,為的共軛復數,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.14.已知復數,且滿足(其中為虛數單位),則____.15.已知圓柱的兩個底面的圓周在同一個球的球面上,圓柱的高和球半徑均為2,則該圓柱的底面半徑為__________.16.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,且曲線在處的切線方程為.(1)求的極值點與極值.(2)當,時,證明:.18.(12分)已知數列的前項和和通項滿足.(1)求數列的通項公式;(2)已知數列中,,,求數列的前項和.19.(12分)已知,其中.(1)當時,設函數,求函數的極值.(2)若函數在區間上遞增,求的取值范圍;(3)證明:.20.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.21.(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現隨機抽取部分學生的答卷,統計結果及對應的頻率分布直方圖如下:等級不合格合格得分頻數624(1)由該題中頻率分布直方圖求測試成績的平均數和中位數;(2)其他條件不變,在評定等級為“合格”的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中抽取10人進行座談.現再從這10人中任選4人,記所選4人的量化總分為,求的數學期望.22.(10分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據題意畫出幾何關系,由四邊形的內切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據題意,畫出幾何關系如下圖所示:設四邊形的內切圓半徑為,雙曲線半焦距為,則所以,四邊形的內切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.2、B【解析】
由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數學轉化思想方法與數形結合的解題思想方法,是中檔題.3、A【解析】
由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.4、A【解析】逐一考查所給的函數:,該函數為偶函數,周期;將函數圖象x軸下方的圖象向上翻折即可得到的圖象,該函數的周期為;函數的最小正周期為;函數的最小正周期為;綜上可得最小正周期為的所有函數為①②③.本題選擇A選項.點睛:求三角函數式的最小正周期時,要盡可能地化為只含一個三角函數的式子,否則很容易出現錯誤.一般地,經過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.5、A【解析】
結合已知可知,可求,進而可求,代入,結合,可求,即可判斷.【詳解】圖象上相鄰兩個極值點,滿足,即,,,且,,,,,,當時,為函數的一個極小值點,而.故選:.【點睛】本題主要考查了正弦函數的圖象及性質的簡單應用,解題的關鍵是性質的靈活應用.6、C【解析】
可分成兩類,一類是3個新教師與一個老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數.本題中有一個平均分組問題.計數時容易出錯.兩組中每組中人數都是2,因此方法數為.7、A【解析】
根據題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.8、A【解析】
根據向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.9、B【解析】由,解得,即或,函數有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數的解析式、定義域、值域、單調性,導數的應用以及數學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據函數的定義域、值域、單調性、奇偶性、特殊點以及時函數圖象的變化趨勢,利用排除法,將不合題意選項一一排除.10、B【解析】
根據菱形中的邊角關系,利用余弦定理和數量積公式,即可求出結果.【詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【點睛】本題主要考查了平面向量的數量積和余弦定理的應用問題,屬于基礎題..11、B【解析】
依照偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x),且定義域關于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據偶函數的定義域關于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點睛】本題考查偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x);奇函數和偶函數的定義域必然關于原點對稱,定義域區間兩個端點互為相反數.12、C【解析】
求出,直接由復數的代數形式的乘除運算化簡復數.【詳解】.故選:C【點睛】本題考查復數的代數形式的四則運算,共軛復數,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用即可建立關于的方程.【詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關鍵是建立的方程或不等式,是一道容易題.14、【解析】
計算出,兩個復數相等,實部與實部相等,虛部與虛部相等,列方程組求解.【詳解】,所以,所以.故答案為:-8【點睛】此題考查復數的基本運算和概念辨析,需要熟練掌握復數的運算法則.15、【解析】
由圓柱外接球的性質,即可求得結果.【詳解】解:由于圓柱的高和球半徑均為2,,則球心到圓柱底面的距離為1,設圓柱底面半徑為,由已知有,∴,即圓柱的底面半徑為.故答案為:.【點睛】本題考查由圓柱的外接球的性質求圓柱底面半徑,屬于基礎題.16、【解析】
建系,設設,由可得,進一步得到的坐標,再利用數量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設,則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數量積,考查學生的運算求解能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)極小值點為,極小值為,無極大值;(2)證明見解析【解析】
先對函數求導,結合已知及導數的幾何意義可求,結合單調性即可求解函數的極值點及極值;令,問題可轉化為求解函數的最值,結合導數可求.【詳解】(1)由題得函數的定義域為.,由已知得,解得∴,令,得令,得,∴在上單調遞增.令,得∴在上單調遞減∴的極小值點為,極小值為,無極大值.(2)證明:由(1)知,∴,令,即∵,,∴恒成立.∴在上單調遞增又,∴在上恒成立∴在上恒成立∴,即∴【點睛】本題考查了利用導數研究函數的極值問題,考查利用導數證明不等式,意在考查學生對這些知識的理解掌握水平,屬于中檔題.18、(1);(2)【解析】
(1)當時,利用可得,故可利用等比數列的通項公式求出的通項.(2)利用分組求和法可求數列的前項和.【詳解】(1)當時,,所以,當時,,①,②所以,即,又因為,故,所以,所以是首項,公比為的等比數列,故.(2)由得:數列為等差數列,公差,,,.【點睛】本題考查數列的通項與求和,注意數列求和關鍵看通項的結構形式,如果通項是等差數列與等比數列的和,則用分組求和法;如果通項是等差數列與等比數列的乘積,則用錯位相減法;如果通項可以拆成一個數列連續兩項的差,那么用裂項相消法;如果通項的符號有規律的出現,則用并項求和法.19、(1)極大值,無極小值;(2).(3)見解析【解析】
(1)先求導,根據導數和函數極值的關系即可求出;(2)先求導,再函數在區間上遞增,分離參數,構造函數,求出函數的最值,問題得以解決;(3)取得到,取,可得,累加和根據對數的運算性和放縮法即可證明.【詳解】解:(1)當時,設函數,則令,解得當時,,當時,所以在上單調遞增,在上單調遞減所以當時,函數取得極大值,即極大值為,無極小值;(2)因為,所以,因為在區間上遞增,所以在上恒成立,所以在區間上恒成立.當時,在區間上恒成立,當時,,設,則在區間上恒成立.所以在單調遞增,則,所以,即綜上所述.(3)由(2)可知當時,函數在區間上遞增,所以,即,取,則.所以所以【點睛】此題考查了參數的取值范圍以及恒成立的問題,以及不等式的證明,構造函數是關鍵,屬于較難題.20、A【解析】
由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應用,以及三角形的面積公式和正切的倍角公式的綜合應用,著重考查了推理與運算能力,屬于中檔試題.21、(1)64,65;(2);(3).【解析】
(1)根據頻率分布直方圖及其性質可求出,平均數,中位數;(2)設“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,由條件概率公式可求出;(3)從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談,其中“不合格”的學生數為,“合格”的學生數為6;由題意可得,5,10,15,1,利用“超幾何分布”的計算公式即可得出概率,進而得出分布列與數學期望.【詳解】由題意知,樣本容量為,.(1)平均數為,設中位數為,因為,所以,則,解得.(2)由題意可知,分數在內的學生有24人,分數在內的學生有12人.設“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,則,所以.(3)在評定等級為“合格”和“不合格”的學生中用分層抽樣的方法抽取10人,則“不合格”的學生人數為,“合格”的學生人數為.由題意可得的所有可能取值為0,5,10,15,1.,.所以的分布列為0510151.【點睛】本題主要考查了頻率分布直方圖的性質、分層抽樣、超幾何分布列及其數學期望
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 漁業資源養護與開發技術平臺研發應用考核試卷
- 電氣安裝船舶與海洋工程考核試卷
- 石材行業的人力資源管理考核試卷
- 天然氣行業人才培養與技能培訓考核試卷
- 畜牧機械設計原理考核試卷
- 纖維素纖維的電磁波吸收特性研究考核試卷
- 電工儀表的模塊化維修考核試卷
- 江蘇省淮安市田家炳中學2024-2025學年第二學期期末教學質量檢測試題高三語文試題含解析
- 吉林省白城市洮北區第一中學2025屆高中畢業班第一次診斷性檢測試題歷史試題文試題含解析
- 四川體育職業學院《論文寫作與學術道德》2023-2024學年第一學期期末試卷
- 米、面制品安全生產與管理考核試卷
- 2024年7月1日實施新版醫療器械采購、收貨、驗收、貯存、銷售、出庫、運輸和售后服務工作程序
- JGJ107-2016鋼筋機械連接技術規程
- 甘肅省煙花爆竹經營許可實施標準細則
- 【精品課件】藥用高分子材料學
- 要素式起訴狀(離婚糾紛)
- 急性腎盂腎炎護理查房
- DB22T 5118-2022 建筑工程資料管理標準
- 小學二下必讀書目《神筆馬良》閱讀測試題及答案
- 登臨詩鑒賞(課堂PPT)
- 蒸壓加氣混凝土砌塊薄層砌筑
評論
0/150
提交評論