




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數在上的圖象大致為()A. B. C. D.2.已知數列是公差為的等差數列,且成等比數列,則()A.4 B.3 C.2 D.13.定義兩種運算“★”與“◆”,對任意,滿足下列運算性質:①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.4.設為等差數列的前項和,若,,則的最小值為()A. B. C. D.5.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有()種.A.360 B.240 C.150 D.1206.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()7.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.58.已知數列是公比為的正項等比數列,若、滿足,則的最小值為()A. B. C. D.9.函數的部分圖像如圖所示,若,點的坐標為,若將函數向右平移個單位后函數圖像關于軸對稱,則的最小值為()A. B. C. D.10.已知x,y滿足不等式,且目標函數z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]11.若點是角的終邊上一點,則()A. B. C. D.12.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側棱,,的中點.若在三棱錐內,且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為虛數單位,且,則=_____.14.從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,則第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為_____________.15.若,則的展開式中含的項的系數為_______.16.雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為________,離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.當時,求不等式的解集;,,求a的取值范圍.18.(12分)為貫徹十九大報告中“要提供更多優質生態產品以滿足人民日益增長的優美生態環境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監測培育的某種植物的生長情況.現分別從、、三塊試驗田中各隨機抽取株植物測量高度,數據如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數據的平均數記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數據與表格中的所有數據構成的新樣本的平均數記為,試比較和的大小.(結論不要求證明)19.(12分)在直角坐標系中,已知直線的直角坐標方程為,曲線的參數方程為(為參數),以直角坐標系原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線和直線的極坐標方程;(2)已知直線與曲線、相交于異于極點的點,若的極徑分別為,求的值.20.(12分)已知函數,.(1)當x≥0時,f(x)≤h(x)恒成立,求a的取值范圍;(2)當x<0時,研究函數F(x)=h(x)﹣g(x)的零點個數;(3)求證:(參考數據:ln1.1≈0.0953).21.(12分)秉持“綠水青山就是金山銀山”的生態文明發展理念,為推動新能源汽車產業迅速發展,有必要調查研究新能源汽車市場的生產與銷售.下圖是我國某地區年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數;(2)請根據頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數據用該組中間值代表),并以此預計年的銷售量.22.(10分)在中,,是邊上一點,且,.(1)求的長;(2)若的面積為14,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據函數的奇偶性及函數在時的符號,即可求解.【詳解】由可知函數為奇函數.所以函數圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數的奇偶性的判定及奇偶函數圖像的對稱性,屬于中檔題.2.A【解析】
根據等差數列和等比數列公式直接計算得到答案.【詳解】由成等比數列得,即,已知,解得.故選:.【點睛】本題考查了等差數列,等比數列的基本量的計算,意在考查學生的計算能力.3.B【解析】
根據新運算的定義分別得出◆2020和2020★2018的值,可得選項.【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點睛】本題考查定義新運算,關鍵在于理解,運用新定義進行求值,屬于中檔題.4.C【解析】
根據已知條件求得等差數列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數列通項公式和前項和公式的基本量計算,考查等差數列前項和最值的求法,屬于基礎題.5.C【解析】
可分成兩類,一類是3個新教師與一個老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數.本題中有一個平均分組問題.計數時容易出錯.兩組中每組中人數都是2,因此方法數為.6.B【解析】
如圖所示:連接,根據垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關鍵.7.A【解析】
由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.8.B【解析】
利用等比數列的通項公式和指數冪的運算法則、指數函數的單調性求得再根據此范圍求的最小值.【詳解】數列是公比為的正項等比數列,、滿足,由等比數列的通項公式得,即,,可得,且、都是正整數,求的最小值即求在,且、都是正整數范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【點睛】本題考查等比數列的通項公式和指數冪的運算法則、指數函數性質等基礎知識,考查數學運算求解能力和分類討論思想,是中等題.9.B【解析】
根據圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數圖象關于軸對稱,求得的最小值.【詳解】由于,函數最高點與最低點的高度差為,所以函數的半個周期,所以,又,,則有,可得,所以,將函數向右平移個單位后函數圖像關于軸對稱,即平移后為偶函數,所以的最小值為1,故選:B.【點睛】該題主要考查三角函數的圖象和性質,根據圖象求出函數的解析式是解決該題的關鍵,要求熟練掌握函數圖象之間的變換關系,屬于簡單題目.10.B【解析】
作出可行域,對t進行分類討論分析目標函數的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規劃,根據可行域結合目標函數的最大值的取值范圍求參數的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數的最大值最優解的處理辦法.11.A【解析】
根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.【點睛】本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12.D【解析】
如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】
解:利用復數相等,可知由有.14.【解析】
基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,由此能求出概率.【詳解】解:從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,分別為:,,,,,,,.所以第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為.故答案為.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎知識,屬于基礎題.15.【解析】
首先根據定積分的應用求出的值,進一步利用二項式的展開式的應用求出結果.【詳解】,根據二項式展開式通項:,令,解得,所以含的項的系數.故答案為:【點睛】本題考查定積分,二項式的展開式的應用,主要考查學生的運算求解能力,屬于基礎題.16.22【解析】
設雙曲線的右焦點為,根據周長為,計算得到答案.【詳解】設雙曲線的右焦點為.周長為:.當共線時等號成立,故,即實軸長為,.故答案為:;.【點睛】本題考查雙曲線周長的最值問題,離心率,實軸長,意在考查學生的計算能力和轉化能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)當時,,①當時,,令,即,解得,②當時,,顯然成立,所以,③當時,,令,即,解得,綜上所述,不等式的解集為.(2)因為,因為,有成立,所以只需,解得,所以a的取值范圍為.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現了數形結合的思想;法二:利用“零點分段法”求解,體現了分類討論的思想;法三:通過構造函數,利用函數的圖象求解,體現了函數與方程的思想.18.(1);(2);(3).【解析】
設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結果;(2)設事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據題意直接判斷和的大小即可.【詳解】設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點睛】本題考查概率的求法,考查互斥事件加法公式、相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,是中等題.19.(1),.(2)【解析】
(1)先將曲線的參數方程化為直角坐標方程,即可代入公式化為極坐標;根據直線的直角坐標方程,求得傾斜角,即可得極坐標方程.(2)將直線的極坐標方程代入曲線、可得,進而代入可得的值.【詳解】(1)曲線的參數方程為(為參數),消去得,把,代入得,從而得的極坐標方程為,∵直線的直角坐標方程為,其傾斜角為,∴直線的極坐標方程為.(2)將代入曲線的極坐標方程分別得到,則.【點睛】本題考查了參數方程化為普通方程的方法,直角坐標方程化為極坐標方程的方法,極坐標的幾何意義,屬于中檔題.20.(1);(2)見解析;(3)見解析【解析】
(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導數,討論a>1和a≤1,判斷導數的符號,由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導數和二階導數,判斷F'(x)的單調性,討論a≤﹣1,a>﹣1,F(x)的單調性和零點個數;(3)由(1)知,當a=1時,ex>1+ln(x+1)對x>0恒成立,令;由(2)知,當a=﹣1時,對x<0恒成立,令,結合條件,即可得證.【詳解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),則,①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)遞增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,且x→+∞時,H'(x)→+∞,則?x0∈(0,+∞),使H'(x0)=0進而H(x)在[0,x0)遞減,在(x0,+∞)遞增,所以當x∈(0,x0)時H(x)<H(0)=0,即當x∈(0,x0)時,f(x)>h(x),不滿足題意,舍去;綜合①,②知a的取值范圍為(﹣∞,1].(Ⅱ)解:依題意得,則F'(x)=ex﹣x2+a,則F''(x)=ex﹣2x>0在(﹣∞,0)上恒成立,故F'(x)=ex﹣x2+a在(﹣∞,0)遞增,所以F'(x)<F'(0)=1+a,且x→﹣∞時,F'(x)→﹣∞;①若1+a≤0,即a≤﹣1,則F'(x)<F'(0)=1+a≤0,故F(x)在(﹣∞,0)遞減,所以F(x)>F(0)=0,F(x)在(﹣∞,0)無零點;②若1+a>0,即a>﹣1,則使,進而F(x)在遞減,在遞增,,且x→﹣∞時,,F(x)在上有一個零點,在無零點,故F(x)在(﹣∞,0)有一個零點.綜合①②,當a≤﹣1時無零點;當a>﹣1時有一個零點.(Ⅲ)證明:由(Ⅰ)知,當a=1時,ex>1+ln(x+1)對x>0恒成立,令,則即;由(Ⅱ)知,當a=﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 書制作合同范例
- 包工合同范例
- 化工材料購銷合同范例
- 單位買社保勞動合同范例
- 個人買賣電器合同范例
- 使用空調合同范例
- 原油進口合同范例
- 出售苗圃基地合同范例
- 公路清障租賃合同范例
- 養殖牛合同范例
- 中國近現代史綱要學習心得體會與社會責任
- 圖解《弘揚教育家精神》全文課件
- 2025年廣州體育職業技術學院高職單招高職單招英語2016-2024年參考題庫含答案解析
- 2025年山西地質集團社會招聘高頻重點提升(共500題)附帶答案詳解
- 課題申報參考:援藏口述史思想政治教育價值的挖掘與應用研究
- 陜煤集團榆林化學有限責任公司招聘筆試
- 2024年南陽農業職業學院單招職業技能測試題庫及解析答案
- 2025年中國電信山東分公司招聘筆試參考題庫含答案解析
- 中國糖尿病防治指南(2024版)解讀-1
- 2024年計算機二級WPS考試題庫(共380題含答案)
- 漢字的奧秘探索
評論
0/150
提交評論