




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.用配方法解方程,方程應變形為()A. B. C. D.2.已知⊙O的半徑是4,圓心O到直線l的距離d=1.則直線l與⊙O的位置關系是()A.相離 B.相切 C.相交 D.無法判斷3.如圖,二次函數y=ax2+bx+c的圖象與x軸的一個交點坐標是(3,0),對稱軸為直線x=1,下列結論:①abc>0;②2a+b=0;③4a﹣2b+c>0;④當y>0時,﹣1<x<3;⑤b<c.其中正確的個數是()A.2 B.3 C.4 D.54.從口袋中隨機摸出一球,再放回口袋中,不斷重復上述過程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10個和若干個白球,由此估計口袋中大約有多少個白球()A.10個 B.20個 C.30個 D.無法確定5.如圖,線段AB兩個端點的坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,則端點C的坐標為()A.(3,3) B.(4,3) C.(3,1) D.(4,1)6.若,面積之比為,則相似比為()A. B. C. D.7.一元二次方程的解是()A.或 B. C. D.8.剪紙是中國特有的民間藝術.在如圖所示的四個剪紙圖案中.既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.9.一次函數與二次函數在同一平面直角坐標系中的圖像可能是()A. B. C. D.10.已知a、b滿足a2﹣6a+2=0,b2﹣6b+2=0,則=()A.﹣6 B.2 C.16 D.16或2二、填空題(每小題3分,共24分)11.如圖,在矩形中,是邊的中點,連接交對角線于點,若,,則的長為________.12.如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.13.將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉15°后,得到△AB′C′,則圖中陰影部分的面積是_____cm1.14.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.15.如圖,在⊙O的內接四邊形ABCD中,∠A=70°,∠OBC=60°,則∠ODC=__________.16.如圖,在中,、分別是、的中點,點在上,是的平分線,若,則的度數是________.17.在一個不透明的布袋中,有紅球、白球共30個,除顏色外其它完全相同,小明通過多次摸球試驗后發現,其中摸到紅球的頻率穩定在40%,則隨機從口袋中摸出一個是紅球的概率是_____.18.如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點A為圓心,AB長為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長為半徑作弧,兩弧交于點E,射線AE與BC于F,過點F作FG⊥AC于G,則FG的長為______.三、解答題(共66分)19.(10分)如圖,菱形ABCD中,∠B=60°,AB=3cm,過點A作∠EAF=60°,分別交DC,BC的延長線于點E,F,連接EF.(1)如圖1,當CE=CF時,判斷△AEF的形狀,并說明理由;(2)若△AEF是直角三角形,求CE,CF的長度;(3)當CE,CF的長度發生變化時,△CEF的面積是否會發生變化,請說明理由.20.(6分)用圓規、直尺作圖,不寫作法,但要保留作圖痕跡.如圖,“幸福”小區為了方便住在A區、B區、和C區的居民(A區、B區、和C區之間均有小路連接),要在小區內設立物業管理處P.如果想使這個物業管理處P到A區、B區、和C區的距離相等,應將它建在什么位置?請在圖中作出點P.21.(6分)某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個柱子,點恰好在水面中心,安裝在柱子頂端處的圓形噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過的任意平面上,水流噴出的高度與水平距離之間的關系如圖所示,建立平面直角坐標系,右邊拋物線的關系式為.請完成下列問題:(1)將化為的形式,并寫出噴出的水流距水平面的最大高度是多少米;(2)寫出左邊那條拋物線的表達式;(3)不計其他因素,若要使噴出的水流落在池內,水池的直徑至少要多少米?22.(8分)碼頭工人每天往一艘輪船上裝載貨物,裝載速度(噸/天)與裝完貨物所需時間(天)之間的函數關系如圖.(1)求與之間的函數表達式,并寫出自變量的取值范圍;(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?23.(8分)為了了解全校1500名學生對學校設置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項體育活動的喜愛情況,在全校范圍內隨機抽查部分學生,對他們喜愛的體育項目(每人只選一項)進行了問卷調查,將統計數據繪制成如圖兩幅不完整統計圖,請根據圖中提供的信息解答下列各題.(1)m=%,這次共抽取了名學生進行調查;并補全條形圖;(2)請你估計該校約有名學生喜愛打籃球;(3)現學校準備從喜歡跳繩活動的4人(三男一女)中隨機選取2人進行體能測試,請利用列表或畫樹狀圖的方法,求抽到一男一女學生的概率是多少?24.(8分)如圖,一次函數y=﹣x+4的圖象與反比例函數y=(k為常數,且k≠0)的圖象交于A(1,a),B(3,b)兩點.(1)求反比例函數的表達式(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(3)求△PAB的面積.25.(10分)計算:(1)x(x﹣2y)﹣(x+y)(x+3y)(2)(+a+3)÷26.(10分)如圖,在ABC中,AC=BC,∠ACB=120°,點D是AB邊上一點,連接CD,以CD為邊作等邊CDE.(1)如圖1,若∠CDB=45°,AB=6,求等邊CDE的邊長;(2)如圖2,點D在AB邊上移動過程中,連接BE,取BE的中點F,連接CF,DF,過點D作DG⊥AC于點G.①求證:CF⊥DF;②如圖3,將CFD沿CF翻折得CF,連接B,直接寫出的最小值.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】常數項移到方程的右邊,兩邊配上一次項系數一半的平方,寫成完全平方式即可得.【詳解】解:∵,
∴,即,
故選:D.【點睛】本題考查配方法解一元二次方程,熟練掌握完全平方公式和配方法的基本步驟是解題的關鍵.2、A【解析】根據直線和圓的位置關系的判定方法,即圓心到直線的距離大于半徑,則直線與圓相離進行判斷.【詳解】解:∵圓心O到直線l的距離d=1,⊙O的半徑R=4,∴d>R,∴直線和圓相離.故選:A.【點睛】本題考查直線與圓位置關系的判定.掌握半徑和圓心到直線的距離之間的數量關系是解答此題的關鍵..3、B【分析】根據二次函數y=ax2+bx+c的圖象與性質依次進行判斷即可求解.【詳解】解:∵拋物線開口向下,∴a<0;∵拋物線的對稱軸為直線x=﹣=1,∴b=﹣2a>0,所以②正確;∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①錯誤;∵拋物線與x軸的一個交點坐標是(3,0),對稱軸為直線x=1,∴拋物線與x軸的另一個交點坐標是(﹣1,0),∴x=﹣2時,y<0,∴4a﹣2b+c<0,所以③錯誤;∵拋物線與x軸的2個交點坐標為(﹣1,0),(3,0),∴﹣1<x<3時,y>0,所以④正確;∵x=﹣1時,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正確.故選B.【點睛】此題主要考查二次函數的圖像與性質,解題的關鍵是熟知二次函數的圖像性質特點.4、B【詳解】解:摸了150次,其中有50次摸到黑球,則摸到黑球的頻率是,設口袋中大約有x個白球,則,解得x=1.經檢驗:x=1是原方程的解故選B.5、A【分析】利用位似圖形的性質和兩圖形的位似比,并結合點A的坐標即可得出C點坐標.【詳解】解:∵線段AB的兩個端點坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∴端點C的橫坐標和縱坐標都變為A點的一半,∴端點C的坐標為:(3,3).故選A.【點睛】本題主要考查位似變換、坐標與圖形性質,解題的關鍵是結合位似比和點A的坐標.6、C【分析】根據相似三角形的面積比等于相似比的平方可直接得出結果.【詳解】解:∵兩個相似三角形的面積比為9:4,
∴它們的相似比為3:1.
故選:C.【點睛】此題主要考查了相似三角形的性質:相似三角形的面積比等于相似比的平方.7、A【解析】方程利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.【詳解】解:方程x(x-1)=0,
可得x=0或x-1=0,
解得:x=0或x=1.
故選:A.【點睛】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.8、C【解析】根據軸對稱圖形的定義沿一條直線對折后,直線兩旁部分完全重合的圖形是軸對稱圖形,以及中心對稱圖形的定義分別判斷即可得出答案.【詳解】A.此圖形沿一條直線對折后不能夠完全重合,∴此圖形不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B.此圖形沿一條直線對折后能夠完全重合,∴此圖形不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤。C.此圖形沿一條直線對折后能夠完全重合,∴此圖形是軸對稱圖形,旋轉180°能與原圖形重合,是中心對稱圖形,故此選項正確;D.此圖形沿一條直線對折后能夠完全重合,旋轉180°不能與原圖形重合,∴此圖形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤。故選C【點睛】此題考查軸對稱圖形和中心對稱圖形,難度不大9、D【分析】本題可先由一次函數y=ax+c圖象得到字母系數的正負,再與二次函數y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數y=ax+c與y軸交點應為(0,c),二次函數y=ax2+bx+c與y軸交點也應為(0,c),圖象不符合,故本選項錯誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選D.【點睛】本題考查拋物線和直線的性質,用假設法來搞定這種數形結合題是一種很好的方法.10、D【分析】當a=b時,可得出=2;當a≠b時,a、b為一元二次方程x2-6x+2=0的兩根,利用根與系數的關系可得出a+b=6,ab=2,再將其代入=中即可求出結論.【詳解】當a=b時,=1+1=2;
當a≠b時,∵a、b滿足a2-6a+2=0,b2-6b+2=0,
∴a、b為一元二次方程x2-6x+2=0的兩根,
∴a+b=6,ab=2,
∴==1.
故選:D.【點睛】此題考查根與系數的關系,分a=b及a≠b兩種情況,求出的值是解題的關鍵.二、填空題(每小題3分,共24分)11、【解析】分析:根據勾股定理求出,根據∥,得到,即可求出的長.詳解:∵四邊形是矩形,∴,∥,,在中,,∴,∵是中點,∴,∵∥,∴,∴.故答案為.點睛:考查矩形的性質,勾股定理,相似三角形的性質及判定,熟練掌握相似三角形的判定方法和性質是解題的關鍵.12、1【分析】作直徑CD,如圖,連接BD,根據圓周角定理得到∠CBD=90°,∠D=10°,然后利用含30度的直角三角形三邊的關系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=10°,∴BD=BC=×1=1,∴CD=2BD=12,∴OC=1,即⊙O的半徑是1.故答案為1.【點睛】本題主要考查圓周角的性質,解決本題的關鍵是要熟練掌握圓周角的性質.13、【解析】∵等腰直角△ABC繞點A逆時針旋轉15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴陰影部分的面積=×5×tan30°×5=.14、這個“果圓”被y軸截得的線段CD的長3+.【分析】連接AC,BC,有拋物線的解析式可求出A,B,C的坐標,進而求出AO,BO,DO的長,在直角三角形ACB中,利用射影定理可求出CO的長,進而可求出CD的長.【詳解】連接AC,BC,∵拋物線的解析式為y=(x-1)2-4,∴點D的坐標為(0,?3),∴OD的長為3,設y=0,則0=(x-1)2-4,解得:x=?1或3,∴A(?1,0),B(3,0)∴AO=1,BO=3,∵AB為半圓的直徑,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO?BO=3,∴CO=,∴CD=CO+OD=3+,故答案為3+.15、50°.【詳解】解:∵∠A=70°,∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案為50°.考點:圓內接四邊形的性質.16、100°【分析】利用三角形中位線定理可證明DE//BC,再根據兩直線平行,同位角相等可求得∠AED,再根據角平分線的定義可求得∠DEF,最后根據兩直線平行,同旁內角互補可求得∠EFB的度數.【詳解】解:∵在△ABC中,D、E分別是AB、AC的中點,
∴DE是△ABC的中位線,
∴DE∥BC,
∴∠AED=∠C=80°,∠DEF+∠EFB=180°,
又ED是∠AEF的角平分線,
∴∠DEF=∠AED=80°,
∴∠EFB=180°-∠DEF=100°.
故答案為:100°.【點睛】本題考查三角形中位線定理,平行線的性質定理,角平分線的有關證明.能得出DE是ABC中位線,并根據三角形的中位線平行于第三邊得出DE∥BC是解題關鍵.17、1.【分析】根據題意得出摸出紅球的頻率,繼而根據頻數=總數×頻率計算即可.【詳解】∵小明通過多次摸球試驗后發現其中摸到紅球的頻率穩定在40%,∴口袋中紅色球的個數可能是30×40%=1個.故答案為:1.【點睛】本題比較容易,考查利用頻率估計概率.大量反復試驗下頻率穩定值即概率.用到的知識點為:概率=所求情況數與總情況數之比.18、.【分析】過點F作FH⊥AB于點H,證四邊形AGFH是正方形,設AG=x,表示出CG,再證△CFG∽△CBA,根據相似比求出x即可.【詳解】如圖過點F作FH⊥AB于點H,由作圖知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四邊形AGFH是正方形,設AG=x,則AH=FH=GF=x,∵tan∠C=,∴AC==,則CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案為:.【點睛】本題是對幾何知識的綜合考查,熟練掌握三角函數及相似知識是解決本題的關鍵.三、解答題(共66分)19、(1)△AEF是等邊三角形,證明見解析;(2)CF=,CE=6或CF=6,CE=;(3)△CEF的面積不發生變化,理由見解析.【分析】(1)證明△BCE≌△DCF(SAS),得出∠BE=DF,CBE=∠CDF,證明△ABE≌△ADF(SAS),得出AE=AF,即可得出結論;(2)分兩種情況:①∠AFE=90°時,連接AC、MN,證明△MAC≌△NAD(ASA),得出AM=AN,CM=DN,證出△AMN是等邊三角形,得出AM=MN=AN,設AM=AN=MN=m,DN=CM=b,BM=CN=a,證明△CFN∽△DAN,得出,得出FN=,AF=m+,同理AE=m+,在Rt△AEF中,由直角三角形的性質得出AE=2AF,得出m+=2(m+),得出b=2a,因此,得出CF=AD=,同理CE=2AB=6;②∠AEF=90°時,同①得出CE=AD=,CF=2AB=6;(3)作FH⊥CD于H,如圖4所示:由(2)得BM=CN=a,CM=DN=b,證明△ADN∽△FCN,得出,由平行線得出∠FCH=∠B=60°,△CEM∽△BAM,得出,得出,求出CF×CE=AD×AB=3×3=9,由三角函數得出CH=CF×sin∠FCH=CF×sin60°=CF,即可得出結論.【詳解】解:(1)△AEF是等邊三角形,理由如下:連接BE、DF,如圖1所示:∵四邊形ABCD是菱形,∴AB=BC=DC=AD,∠ABC=∠ADC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴∠BE=DF,CBE=∠CDF,∴∠ABC+∠CBE=∠ADC+∠CDF,即∠ABE=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,又∵∠EAF=60°,∴△AEF是等邊三角形;(2)分兩種情況:①∠AFE=90°時,連接AC、MN,如圖2所示:∵四邊形ABCD是菱形,∴AB=BC=DC=AD=3,∠D=∠B=60°,AD∥BC,AB∥CD,∴△ABC和△ADC是等邊三角形,∴AC=AD,∠ACM=∠D=∠CAD=60°=∠EAF,∴∠MAC=∠NAD,在△MAC和△NAD中,,∴△MAC≌△NAD(ASA),∴AM=AN,CM=DN,∵∠EAF=60°,∴△AMN是等邊三角形,∴AM=MN=AN,設AM=AN=MN=m,DN=CM=b,BM=CN=a,∵CF∥AD,∴△CFN∽△DAN,∴,∴FN=,∴AF=m+,同理:AE=m+,在Rt△AEF中,∵∠EAF=60°,∴∠AEF=30°,∴AE=2AF,∴m+=2(m+),整理得:b2﹣ab﹣2a2=0,(b﹣2a)(b+a)=0,∵b+a≠0,∴b﹣2a=0,∴b=2a,∴=,∴CF=AD=,同理:CE=2AB=6;②∠AEF=90°時,連接AC、MN,如圖3所示:同①得:CE=AD=,CF=2AB=6;(3)當CE,CF的長度發生變化時,△CEF的面積不發生變化;理由如下:作FH⊥CD于H,如圖4所示:由(2)得:BM=CN=a,CM=DN=b,∵AD∥CF,∴△ADN∽△FCN,∴,∵CE∥AB,∴∠FCH=∠B=60°,△CEM∽△BAM,∴,∴,∴CF×CE=AD×AB=3×3=9,∵CH=CF×sin∠FCH=CF×sin60°=CF,△CEF的面積=CE×FH=CE×CF=×9×=,∴△CEF的面積是定值,不發生變化.【點睛】本題考查了三角形全等,三角形相似的判定及性質,三角函數的應用,相似的的靈活應用是解題的關鍵20、見解析【分析】物業管理處P到B,A的距離相等,那么應在BA的垂直平分線上,到A,C的距離相等,應在AC的垂直平分線上,那么到A區、B區、C區的距離相等的點應是這兩條垂直平分線的交點;【詳解】解:如圖所示:【點睛】本題主要考查了作圖—應用與設計作圖,掌握作圖—應用與設計作圖是解題的關鍵.21、(1)噴出的水流距水平面的最大高度是4米.(2).(3)水池的直徑至少要6米.【分析】(1)利用配方法將一般式轉化為頂點式,即可求出噴出的水流距水平面的最大高度;(2)根據兩拋物線的關于y軸對稱,即可求出左邊拋物線的二次項系數和頂點坐標,從而求出左邊拋物線的解析式;(3)先求出右邊拋物線與x軸的交點的橫坐標,利用對稱性即可求出水池的直徑的最小值.【詳解】解:(1)∵,∴拋物線的頂點式為.∴噴出的水流距水平面的最大高度是4米.(2)∵兩拋物線的關于y軸對稱∴左邊拋物線的a=-1,頂點坐標為(-1,4)左邊拋物線的表達式為.(3)將代入,則得,解得,(求拋物線與x軸的右交點,故不合題意,舍去).∵(米)∴水池的直徑至少要6米.【點睛】此題考查的是二次函數的應用,掌握將二次函數的一般式轉化為頂點式、利用頂點式求二次函數的解析式和求拋物線與x軸的交點坐標是解決此題的關鍵.22、(1);(2)80噸【分析】(1))設y與x之間的函數表達式為y=,然后根據待定系數法求出解析式,然后根據k確定x的取值范圍;(2)將x=5代入函數解析式求得y的值,即可解答.【詳解】解:(1)由圖像可知與成反比例函數設∵過點,∴∴與之間的函數表達式為;∴自變量的取值范圍:(2)∵當時,答:平均每天至少要卸80噸貨物.【點睛】本題考查了反比例函數的應用,弄清題意、確定反比例函數的解析式是解答本題的關鍵.23、(1)20;50;(2)360;(3).【解析】試題分析:(1)首先由條形圖與扇形圖可求得m=100%-14%-8%-24%-34%=20%;由跳繩的人數有4人,占的百分比為8%,可得總人數4÷8%=50;(2)由1500×24%=360,即可求得該校約有360名學生喜愛打籃球;(3)首先根據題意畫出表格,然后由表格即可求得所有等可能的結果與抽到一男一女學生的情況,再利用概率公式即可求得答案.試題解析:(1)m=100%-14%-8%-24%-34%=20%;∵跳繩的人數有4人,占的百分比為8%,∴4÷8%=50;如圖所示;50×20%=10(人).(2)1500×24%=360;(3)列表如下:
男1
男2
男3
女
男1
男2,男1
男3,男1
女,男1
男2
男1,男2
男3,男2
女,男2
男3
男1,男3
男2,男3
女,男3
女
男1,女
男2,女
男3,女
∵所有可能出現的結果共12種情況,并且每種情況出現的可能性相等.其中一男一女的情況有6種.∴抽到一男一女的概率P=.考點:1.列表法與樹狀圖法;2.扇形統計圖;3.條形統計圖.24、(1)反比例函數的表達式y=,(2)點P坐標(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數中可得到A點坐標,再把A點坐標代入反比例解析式中即可得到反比例函數的表達式;(2)作點D關于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標,再由待定系數法求出直線AD的解析式,即可得到點P的坐標;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
點A(1,3)代入反比例函數y=,
得k=3,
∴反比例函數的表達式y=,
(2)把B(3,b)代入y=得,b=1∴點B坐標(3,1);作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,
∴D(3,﹣1),設直線AD的解析式為y=mx+n,
把A,D兩點代入得,,
解得m=﹣2,n=1,
∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,
∴點P坐標(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數與反比例函數的綜合題,并與幾何圖形結合在一起來求有關于最值方面的問題.此類問題的重點是在于通過待定系數法求出函數圖象的解析式,再通過函數解析式反過來求坐標,為接下來求面積做好鋪墊.25、(1)﹣6xy﹣3y2;(2)【分析】(1)根據整式的混合運算順序和運算法則,即可求解;(2)根據分式的混合運算順序和運算法則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能財稅考試題型及答案
- 疫苗研發中的微生物檢驗及試題及答案
- 2025年注冊會計師考試的經典模擬題分析試題及答案
- 2024年項目管理考生準備試題及答案
- 2024年項目管理資格的必考知識點試題及答案
- 財務預算編制技巧試題及答案2025
- 社交媒體在危機傳播中的作用考核試卷
- 漁業區域發展與合作模式考核試卷
- 2025年【低壓電工】模擬考試題及答案
- 2023年中國鋼研人工智能新業務招聘筆試參考題庫附帶答案詳解
- 雞球蟲課件(共32張課件)《動物疫病防治》
- 八年級下 地理 商務星球版《海洋利用與保護》名師課件
- 第七章 堅持以軍事、科技、文化、社會安全為保障-國家安全教育大學生讀本教案
- 《民法典》醫療損害責任篇培訓課件
- 國企數字化轉型解讀及賦能zzw
- 血液透析前中后護理
- 康復醫學教材
- 《建筑工程設計文件編制深度規定》(2022年版)
- 詢價比價報告模板
- 《2024年 《法學引注手冊》示例》范文
- 家具抖音號運營推廣策劃方案課件
評論
0/150
提交評論