2023屆海南省省直轄縣中考數學四模試卷含解析_第1頁
2023屆海南省省直轄縣中考數學四模試卷含解析_第2頁
2023屆海南省省直轄縣中考數學四模試卷含解析_第3頁
2023屆海南省省直轄縣中考數學四模試卷含解析_第4頁
2023屆海南省省直轄縣中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小明調查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統計圖.在這20位同學中,本學期購買課外書的花費的眾數和中位數分別是()A.50,50 B.50,30 C.80,50 D.30,502.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°3.若不等式組2x-1>3x≤a的整數解共有三個,則aA.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤64.在實數,有理數有()A.1個 B.2個 C.3個 D.4個5.關于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數,則k值是()A.﹣1 B.±2 C.2 D.﹣26.將拋物線y=x2先向左平移2個單位,再向下平移3個單位后所得拋物線的解析式為()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣37.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x68.如圖,△ABC是⊙O的內接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數是()A.45° B.85° C.90° D.95°9.某校今年共畢業生297人,其中女生人數為男生人數的65%,則該校今年的女畢業生有()A.180人B.117人C.215人D.257人10.工信部發布《中國數字經濟發展與就業白皮書(2018)》)顯示,2017年湖北數字經濟總量1.21萬億元,列全國第七位、中部第一位.“1.21萬”用科學記數法表示為()A.1.21×103B.12.1×103C.1.21×104D.0.121×10511.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數是()A.15° B.22.5° C.30° D.45°12.如圖所示,a∥b,直線a與直線b之間的距離是()A.線段PA的長度 B.線段PB的長度C.線段PC的長度 D.線段CD的長度二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有一個計算程序,每次運算都是把一個數先乘2,再除以它與1的和,多次重復進行這種運算的過程如下:則第n次的運算結果是____________(用含字母x和n的代數式表示).14.如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為__________.15.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.16.如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯結FC,當△EFC是直角三角形時,那么BE的長為______.17.兩個反比例函數y=kx和y=1x在第一象限內的圖象如圖所示,點P在y=kx的圖象上,PC⊥x軸于點C,交18.如圖,矩形ABCD中,AD=5,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優惠,優勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.(1)求一次至少購買多少只計算器,才能以最低價購買?(2)求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數關系式,并寫出自變量x的取值范圍;(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發現賣46只賺的錢反而比賣50只賺的錢多,請你說明發生這一現象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?20.(6分)如圖,點B、E、C、F在同一條直線上,AB=DE,AC=DF,BE=CF,求證:AB∥DE.21.(6分)在平面直角坐標系xOy中,已知兩點A(0,3),B(1,0),現將線段AB繞點B按順時針方向旋轉90°得到線段BC,拋物線y=ax2+bx+c經過點C.(1)如圖1,若拋物線經過點A和D(﹣2,0).①求點C的坐標及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.22.(8分)如圖是根據對某區初中三個年級學生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進行隨機抽樣調查,并繪制了下面不完整的條形統計圖和扇形統計圖(每人必選一種讀物,并且只能選一種),根據提供的信息,解答下列問題:(1)求該區抽樣調查人數;(2)補全條形統計圖,并求出最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角度數;(3)若該區有初中生14400人,估計該區有初中生最喜歡讀“名人傳記”的學生是多少人?23.(8分)為進一步打造“宜居重慶”,某區擬在新竣工的矩形廣場的內部修建一個音樂噴泉,要求音樂噴泉M到廣場的兩個入口A、B的距離相等,且到廣場管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請在答題卷的原圖上利用尺規作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結論,保留作圖痕跡,必須用鉛筆作圖)24.(10分)已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.25.(10分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數據如圖2.(參考數據:sin37°=

,cos37°=

,tan37°=

(1)求把手端點A到BD的距離;

(2)求CH的長.

26.(12分)如圖,已知反比例函數和一次函數的圖象相交于第一象限內的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.求反比例函數和一次函數的解析式.若一次函數的圖象與x軸相交于點C,求∠ACO的度數.結合圖象直接寫出:當>>0時,x的取值范圍.27.(12分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點O,再以點O為圓心,OB的長為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關系,直接寫出結果.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】分析:根據扇形統計圖分別求出購買課外書花費分別為100、80、50、30、20元的同學人數,再根據眾數、中位數的定義即可求解.詳解:由扇形統計圖可知,購買課外書花費為100元的同學有:20×10%=2(人),購買課外書花費為80元的同學有:20×25%=5(人),購買課外書花費為50元的同學有:20×40%=8(人),購買課外書花費為30元的同學有:20×20%=4(人),購買課外書花費為20元的同學有:20×5%=1(人),20個數據為100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在這20位同學中,本學期計劃購買課外書的花費的眾數為50元,中位數為(50+50)÷2=50(元).故選A.點睛:本題考查了扇形統計圖,平均數,中位數與眾數,注意掌握通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.2、C【解析】

由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,由三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大小.【詳解】∵四邊形ABCD是平行四邊形,∴,由折疊的性質得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.3、C【解析】

首先確定不等式組的解集,利用含a的式子表示,根據整數解的個數就可以確定有哪些整數解,根據解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解不等式組得:2<x≤a,∵不等式組的整數解共有3個,∴這3個是3,4,5,因而5≤a<1.故選C.【點睛】本題考查了一元一次不等式組的整數解,正確解出不等式組的解集,確定a的范圍,是解答本題的關鍵.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.4、D【解析】試題分析:根據有理數是有限小數或無限循環小數,可得答案:是有理數,故選D.考點:有理數.5、D【解析】

根據一元二次方程根與系數的關系列出方程求解即可.【詳解】設方程的兩根分別為x1,x1,

∵x1+(k1-4)x+k-1=0的兩實數根互為相反數,

∴x1+x1,=-(k1-4)=0,解得k=±1,

當k=1,方程變為:x1+1=0,△=-4<0,方程沒有實數根,所以k=1舍去;

當k=-1,方程變為:x1-3=0,△=11>0,方程有兩個不相等的實數根;

∴k=-1.

故選D.【點睛】本題考查的是根與系數的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.6、D【解析】

先得到拋物線y=x2的頂點坐標(0,0),再根據點平移的規律得到點(0,0)平移后的對應點的坐標為(-2,-1),然后根據頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線y=x2的頂點坐標為(0,0),把點(0,0)先向左平移2個單位,再向下平移1個單位得到對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.故選:D.【點睛】本題考查了二次函數與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.7、A【解析】根據同底數冪的乘法,同底數冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.8、B【解析】

解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關系.9、B【解析】

設男生為x人,則女生有65%x人,根據今年共畢業生297人列方程求解即可.【詳解】設男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點睛】本題考查了一元一次方程的應用,根據題意找出等量關系列出方程是解答本題的關鍵.10、C【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.詳解:1.21萬=1.21×104,故選:C.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.11、A【解析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質.12、A【解析】分析:從一條平行線上的任意一點到另一條直線作垂線,垂線段的長度叫兩條平行線之間的距離,由此可得出答案.詳解:∵a∥b,AP⊥BC∴兩平行直線a、b之間的距離是AP的長度∴根據平行線間的距離相等∴直線a與直線b之間的距離AP的長度故選A.點睛:本題考查了平行線之間的距離,屬于基礎題,關鍵是掌握平行線之間距離的定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題分析:根據題意得;;;根據以上規律可得:=.考點:規律題.14、4.1【解析】解:如圖所示:∵四邊形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根據題意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,設AP=EP=x,則PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根據勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案為4.1.15、1.【解析】過點B作BE⊥x軸于點E,根據D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.16、1.5或3【解析】根據矩形的性質,利用勾股定理求得AC==5,由題意,可分△EFC是直角三角形的兩種情況:如圖1,當∠EFC=90°時,由∠AFE=∠B=90°,∠EFC=90°,可知點F在對角線AC上,且AE是∠BAC的平分線,所以可得BE=EF,然后再根據相似三角形的判定與性質,可知△ABC∽△EFC,即,代入數據可得,解得BE=1.5;如圖2,當∠FEC=90°,可知四邊形ABEF是正方形,從而求出BE=AB=3.故答案為1.5或3.點睛:此題主要考查了翻折變換的性質,勾股定理,矩形的性質,正方形的判定與性質,利用勾股定理列方程求解是常用的方法,本題難點在于分類討論,做出圖形更形象直觀.17、①②④.【解析】①△ODB與△OCA的面積相等;正確,由于A、B在同一反比例函數圖象上,則兩三角形面積相等,都為12②四邊形PAOB的面積不會發生變化;正確,由于矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發生變化.③PA與PB始終相等;錯誤,不一定,只有當四邊形OCPD為正方形時滿足PA=PB.④當點A是PC的中點時,點B一定是PD的中點.正確,當點A是PC的中點時,k=2,則此時點B也一定是PD的中點.故一定正確的是①②④18、5【解析】

作點A關于直線CD的對稱點E,作EP⊥AC于P,交CD于點Q,此時QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解決問題.【詳解】解:作點A關于直線CD的對稱點E,作EP⊥AC于P,交CD于點Q.∵四邊形ABCD是矩形,∴∠ADC=90°,∴DQ⊥AE,∵DE=AD,∴QE=QA,∴QA+QP=QE+QP=EP,∴此時QA+QP最短(垂線段最短),∵∠CAB=30°,∴∠DAC=60°,在Rt△APE中,∵∠APE=90°,AE=2AD=10,∴EP=AE?sin60°=10×=5.故答案為5.【點睛】本題考查矩形的性質、最短問題、銳角三角函數等知識,解題的關鍵是利用對稱以及垂線段最短找到點P、Q的位置,屬于中考常考題型.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1;(3);(3)理由見解析,店家一次應賣45只,最低售價為16.5元,此時利潤最大.【解析】試題分析:(1)設一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降低0.10元,而最低價為每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根據(1)得到x≤1,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據已知條件可以得到y與x的函數關系式;(3)首先把函數變為y=-0.1x2+9x試題解析:(1)設一次購買x只,則30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少買1只,才能以最低價購買;(3)當10<x≤1時,y=[30﹣0.1(x﹣10)﹣13]x=-0.1x綜上所述:;(3)y=-0.1x2+9x②當45<x≤1時,y隨x的增大而減小,即當賣的只數越多時,利潤變小.且當x=46時,y1=303.4,當x=1時,y3=3.∴y1>y3.即出現了賣46只賺的錢比賣1只賺的錢多的現象.當x=45時,最低售價為30﹣0.1(45﹣10)=16.5(元),此時利潤最大.故店家一次應賣45只,最低售價為16.5元,此時利潤最大.考點:二次函數的應用;二次函數的最值;最值問題;分段函數;分類討論.20、詳見解析.【解析】試題分析:利用SSS證明△ABC≌△DEF,根據全等三角形的性質可得∠B=∠DEF,再由平行線的判定即可得AB∥DE.試題解析:證明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),則∠B=∠DEF,∴AB∥DE.考點:全等三角形的判定與性質.21、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】

(1)①先判斷出△AOB≌△GBC,得出點C坐標,進而用待定系數法即可得出結論;②分兩種情況,利用平行線(對稱)和直線和拋物線的交點坐標的求法,即可得出結論;(2)同(1)②的方法,借助圖象即可得出結論.【詳解】(1)①如圖2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋轉知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,過點C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),拋物線經過點A(1,3),和D(﹣2,1),∴,∴,∴拋物線解析式為y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如圖1,OP∥BC,∵B(1,1),C(4,1),∴直線BC的解析式為y=x﹣,∴直線OP的解析式為y=x,∵拋物線解析式為y=﹣x2+x+3;聯立解得,或(舍)∴P(,);在直線OP上取一點M(3,1),∴點M的對稱點M'(3,﹣1),∴直線OP'的解析式為y=﹣x,∵拋物線解析式為y=﹣x2+x+3;聯立解得,或(舍),∴P'(,﹣);(2)同(1)②的方法,如圖3,∵拋物線y=ax2+bx+c經過點C(4,1),E(2,1),∴,∴,∴拋物線y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=∵符合條件的Q點恰好有2個,∴方程ax2﹣6ax+8a+1=1有一個正根和一個負根或一個正根和1,∴x1×x2=≤1,∵a<1,∴8a+1≥1,∴a≥﹣,即:﹣≤a<1.【點睛】本題是二次函數綜合題,考查了待定系數法,全等三角形的判定和性質,平行線的性質,對稱的性質,解題的關鍵是求出直線和拋物線的交點坐標.22、(1)該區抽樣調查的人數是2400人;(2)見解析,最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角是度數21.6°;(3)估計最喜歡讀“名人傳記”的學生是4896人【解析】

(1)由“科普知識”人數及其百分比可得總人數;(2)總人數乘以“漫畫叢書”的人數求得其人數即可補全圖形,用360°乘以“其他”人數所占比例可得;(3)總人數乘以“名人傳記”的百分比可得.【詳解】(1)840÷35%=2400(人),∴該區抽樣調查的人數是2400人;(2)2400×25%=600(人),∴該區抽樣調查最喜歡“漫畫叢書”的人數是600人,補全圖形如下:×360°=21.6°,∴最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角是度數21.6°;(3)從樣本估計總體:14400×34%=4896(人),答:估計最喜歡讀“名人傳記”的學生是4896人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖能夠清楚地表示各部分所占的百分比.23、解:作AB的垂直平分線,以點C為圓心,以AB的一半為半徑畫弧交AB的垂直平分線于點M即可.【解析】

易得M在AB的垂直平分線上,且到C的距離等于AB的一半.24、證明見解析【解析】證明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四邊形ABCD是平行四邊形(一組對邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論